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Abstract

Exploring Dipolar Coupling and the Chemical Shift for Structure Determination in

Solids and in Liquid Crystals.

by

Robert Harold Havlin, Jr.

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Alexander Pines, Chair

The development of novel structural techniques is vital to progress in many fields, most no-

tably chemistry and biology. Nuclear magnetic resonance (NMR) has developed to a degree

that ideally enables it to address structural questions. In this work, several new techniques

are presented that provide structural parameters for systems which might be difficult to

determine structures for by any other method. In particular, liquid crystalline systems such

as organic liquid crystals and membrane mimetic bicelle systems can be studied now by

utilizing the methods presented in this thesis. Another method for providing structural

information for proteins in the solid and liquid state employs developments in ab initio

chemical shift calculations to generate dihedral angles from spectroscopic observables. Fi-

nally, a novel method for creating isotropic dipole coupled spectra in solids is presented and

applied to simple samples in an initial step toward becoming a new structural technique.
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Chapter 1

Introduction

Perhaps one of the most important questions in chemistry and biology today is:

What is the structure of a given molecule, peptide, or protein, etc.? Understanding the

three-dimensional (3D) structure of a catalyst can allow a chemical engineer make improve-

ments in an industrial process to reduce pollution. Knowing the 3D fold of an enzyme

enables a molecular biologist to design a drug that saves the life an alarming number of

AIDS patients worldwide. Without a doubt, structural methods have an impact on the

world around us.

Structural techniques such as X-ray crystallography have developed to an extent

where the structure of almost any molecule or protein can be determined if a single crystal

of it can be grown. Problems arise with X-ray crystallography when crystals cannot be

grown or a molecule has a dynamic structure. Obviously, other methods are required when

X-ray crystallography fails to provide a structure for a sample of great importance.

An alternate method for structure determination that has been growing in im-

portance is nuclear magnetic resonance (NMR). NMR spectroscopy has made the largest
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impact in the determination of protein structures, and a pioneer in NMR was awarded

the Nobel Prize this year for his contributions in this area[1]. The information provided

by NMR structures is not only complementary to X-ray crystallography, but it can pro-

vide additional information about dynamics. Another benefit of structure determination by

NMR is that it is performed on molecules in solution and not the single crystals required

for X-ray diffraction. Since NMR structures are typically determined in water, it is well

suited to study proteins and other biologically relevant molecules; these systems are almost

exclusively found in water and are difficult to crystallize.

However, many molecules of significance cannot be studied by X-ray or liquid state

NMR methods. Molecules such as zeolite catalysts or membrane proteins are examples of

systems that cannot be studied by these methods. In these cases, researchers often turn to

an alternate method such as solid state NMR which can study solids as well as solid-like

systems.

The content of this thesis describes some novel attempts toward reaching the

ultimate goal of a methodology which can be described as NMR crystallography. This

methodology is able to determine 3D structures of molecules from observed interactions in

NMR that are described by the Hamiltonians in the following chapter.
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Chapter 2

Basics of NMR

2.1 The Hamiltonians

The nuclear spin Hamiltonian can be written as a sum of internal and external

parts:

H = Hint +Hext. (2.1)

With this separation, the effects intrinsic to the spin system are included in the Hint Hamil-

tonian while Hext contains terms due to the experimental setup. The Hint can be further

subdivided into the basic interactions resulting from the environment of the nucleus:

Hint = HCS +HJ +HD +HQ (2.2)

whereHCS is the chemical shielding (or chemical shift), HJ is the indirect spin-spin coupling

(or J coupling), HD is the direct dipole-dipole coupling (or dipolar coupling), and HQ is

the quadrupolar coupling. Each of these interactions is intrinsic to the spin system and
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primarily depends upon the chemical environment of the nucleus.

Effects that are a result of actions performed on the spin system are included in the

external Hamiltonian, and they can usually be separated into Zeeman and radio frequency

(RF) contributions:

Hext = HZ +HRF . (2.3)

It is through the Hamiltonian of Eq. (2.3) that the experimenter is able to interact with the

spins, and this has been the focus of much of the field of NMR[2].

With a thorough knowledge of the information that is intrinsically available from

the internal Hamiltonian of Eq. (2.2), we can tailor our Hext to extract the desired informa-

tion. Each of the components of the internal and external Hamiltonians will be described

in more detail below.

The basic NMR interaction Hamiltonians can be described as the product of vec-

tors I and S with a second rank Cartesian tensors (Â) which are 3x3 matrices:

H = I · Â · S =
[
IX IY IZ

]

AXX AXY AXZ

AY X AY Y AY Z

AZX AZY AZZ




SX

SY

SZ

 . (2.4)

For example, coupling of the spin I to an external magnetic field can be represented as:

H0,I = I · Ẑ ·B0 (2.5)

where Ẑ = −γI 1̂ and B0 = (Bx, By, Bz).
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These second rank Cartesian tensors are represented in the molecular axis system;

they can be made diagonal in their principal axis system (PAS) to yield three principal

components (A11, A22, A33). This is depicted in Figure 2.1:

HPAS =


A11 0 0

0 A22 0

0 0 A33

 .

Often times in NMR, frame transformations are performed in and out of the PAS to

A22

A11

A33

Figure 2.1: Ellipsoid representing a second rank interaction tensor in the principal axis
system.

facilitate calculations.

In addition to expressing spin interactions in terms of Cartesian tensors, they

may also be written using spherical tensors. This is often times more convenient when

calculating the effects of rotations or other unitary transformations[3]. The general form of
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the Hamiltonian written in spherical tensors is then:

H =
2∑
l=0

+l∑
m=−l

(−1)mAlmTl−m (2.6)

where Alm is a rank l spherical tensor due to space and Tl−m is a rank l spherical tensor due

to spin space. The details of this representation are treated in more detail in Appendix A.1

and are used extensively in Chapter 7.

Interaction Hamiltonian

Chemical Shift HCS = γI · σ̂ ·B0

Dipole-Dipole HD = γiγj~
r3ij

[Ii · Ij − 3(Ii·rij)(Ij ·rij)

r2ij
]

HD = Ii · D̂ · Ij

J-coupling HJ = Ii · Ĵ · Ij

Quadrupolar coupling HQ = eQ
2I(2I−1)~I · V̂ · I

Table 2.1: Interaction Hamiltonians

2.1.1 Zeeman

The largest interaction in magnetic resonance is that of the spin with the large

external magnetic field. It is this field which creates the 2I+1 non-degenerate spin angular

momentum energy levels characterized by the spin angular momentum quantum number I.

When written as a second rank Cartesian tensor, the Zeeman Hamiltonian has the form:

HZ = −I · Ẑ ·B. (2.7)
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Eq. 2.7 is simplified when the magnetic field is only applied in the z direction:

HZ = −γBzIz (2.8)

where γ is the magnetogyric ratio (γ1H = 26.7522128 × 107 rad
T ·s = 42.58MHz

T and γ13C =

6.728284× 107 rad
T ·s = 10.71MHz

T ), Bz is the magnetic field strength, and Iz is a spin angular

momentum operator with eigenvalues m = −I, (−I + 1), ..., I. The Zeeman Hamiltonian is

often written in the form:

HZ = ω0Iz (2.9)

where ω0 is the Larmor frequency and is given by ω0 = −γBz.

2.1.2 Radio Frequency

The other external interaction is represented by the RF Hamiltonian which occurs

due to an applied RF field of frequency ω and strength ω1 = −γBz:

HRF = 2ω1 cos(ωt+ φ)Ix. (2.10)

This Hamiltonian is utilized to describe the application of RF pulses.

Rotating Frame

In an effort to simplify the calculation and interpretation of NMR signals, we

often perform the rotating frame transformation to remove the large Zeeman term from the
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analysis. In the rotating frame transformation, Eq. 2.10 becomes:

HRF = ω1(cosφIx + sinφIy). (2.11)

In this manner, the frequency of the applied field does not oscillate but instead lies in the

x-y plane at an angle φ from the x axis. This results in the replacement of the Larmor

frequency with an offset frequency ∆ω = ω0 − ω in the Zeeman Hamiltonian:

HZ = ∆ωIz. (2.12)

This frame transformation allows us to focus on the smaller perturbations that represent

the interesting aspects of NMR.

2.1.3 Chemical Shift

The field experienced at the nucleus generally is not exactly the applied Bz; in-

stead, the nucleus is shielded by the surrounding bonding electrons, and the field it experi-

ences varies accordingly. This chemical shielding Hamiltonian can be written as:

HCS = γI · σ̂ ·B0 (2.13)

where σ̂ represents a second rank tensor describing the chemical shielding. The following

relationship is noteworthy to remember

δ = (σref − σ) (2.14)
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where δ represents the chemical shift which is commonly what is reported experimentally,

and σref is the absolute shielding of a reference compound (such as tetramethylsilane).

Therefore, we can discuss either chemical shielding or chemical shift in the following chap-

ters. The chemical shielding in the PAS can be separated into an isotropic:

H iso
CS = γBz

1
3
(σ11 + σ22 + σ33)Iz

= −ω0σisoIz (2.15)

and an anisotropic part:

Haniso
CS = − 1

3
ω0[σ33 −

1
2
(σ11 + σ22)](3 cos2 β − 1)Iz

− 1
2
ω0[(σ11 − σ22) sin2 β cos 2α]Iz. (2.16)

If we define ∆σ = σ33− σiso as the chemical shift anisotropy (CSA) and η = σ22−σ11
∆σ as the

asymmetry of the chemical shift, then the anisotropic part becomes:

Haniso
CS = −1

2
ω0∆σ[(3 cos2 β − 1) + η sin2 β cos 2α]Iz (2.17)

where α and β relate the principal axis system of the chemical shielding tensor to the lab

frame where the field is oriented along the z axis. Therefore, the total chemical shielding

Hamiltonian is:

HCS = −ω0σisoIz −
1
2
ω0∆σ[(3 cos2 β − 1) + η sin2 β cos 2α]Iz (2.18)
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Quantities which are convenient for comparing the chemical shift anisotropy ten-

sors as defined by Jameson [88] are the span (Ω, which is always positive) and skew (κ,

ranging from -1 to +1):

Ω = (σ33 − σ11), where σ33 ≥ σ22 ≥ σ11 (2.19)

κ = (σiso − σ22)/(σ33 − σ11), where σ33 ≥ σ22 ≥ σ11 (2.20)

2.1.4 J Coupling

Indirect spin-spin coupling, also called the J coupling, is the interaction between

nuclei mediated through the bonding electrons in the molecule. The J coupling can also be

expressed as a second rank Cartesian tensor:

HJ = Ii · Ĵ · Ij. (2.21)

Although most people are familiar with the isotropic part of the J coupling observed in

liquid state NMR, an anisotropic part also exists which is not usually seen. Using the

familiar ladder operators:

I± = IX ± iIY , (2.22)

we simplify Eq. (2.21) to:

HJ = JZZIi,ZIj,Z +
1
4
(Jij,XX + Jij,Y Y )(Ii,+Ij,− + Ii,−Ij,+) (2.23)
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where only those terms that commute with IZ are observable. In Eq. (2.23) the J coupling

can be separated into the isotropic:

H iso
J = JZZIi,ZIj,Z (2.24)

and the anisotropic part:

Haniso
J =

1
4
(Jij,XX + Jij,Y Y )(Ii,+Ij,− + Ii,−Ij,+). (2.25)

Thus, even if the anisotropic part is not negligible, it will be difficult to separate it from

the direct dipolar couplings experimentally.

2.1.5 Dipolar Coupling

The direct dipole-dipole interaction, also called dipolar coupling, is the interaction

of two spins through space. Unlike the J coupling or the chemical shift, the dipolar coupling

has no isotropic part; therefore, in liquid state NMR where the samples are isotropically

tumbling, the dipolar coupling is not observed. The dipolar coupling interaction can be

expressed as a second-rank Cartesian tensor that is both symmetric and traceless:

HD = Ii · D̂ · Ij. (2.26)

Again, it is more convenient to write the interaction in the laboratory frame; this frame

is rotated from the principal axis system and is axially symmetric about the internuclear
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vector. The second rank tensor D̂ can be rewritten as:

Dαβ =
µ0~γiγj
4πr3ij

[δαβ − 3eαeβ ] (2.27)

where α and β are the laboratory fixed axes X,Y,Z, δαβ is the Kronecker delta function (1 if

α = β, 0 if α 6= β) and eα,β is the α, β component of the unit vector along the internuclear

vector, ~rij . Using spherical coordinates and the ladder operators of Eq. (2.22), Eq. (2.26)

can be rewritten as:

HD =
µ0~γiγj
4πr3ij

(A+B + C +D + E + F ) (2.28)

with

A = (1− 3 cos2 θij)Ii,ZIj,Z (2.29)

B = −1
4
(1− 3 cos2 θij)(Ii,+Ij,− + Ii,−Ij,+) (2.30)

C = −3
2

sin θij cos θije−iφij (Ii,+Ij,Z + Ii,ZIj,+) (2.31)

D = C∗ = −3
2

sin θij cos θije+iφij (Ii,−Ij,Z + Ii,ZIj,−) (2.32)

E = −3
4

sin2 θije
−i2φijIi,+Ij,+ (2.33)

F = E∗ = −3
4

sin2 θije
+i2φijIi,−Ij,−. (2.34)

(2.35)
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Keeping only those terms in the Hamiltonian that commute with IZ , we are left with only

the ’secular’ terms:

HD = 2Dij,ZZ [Ii,ZIj,Z −
1
4
(Ii,+Ij,− + Ii,−Ij,+)] (2.36)

where

Dij,ZZ =
µ0~γiγj
4πr3ij

(1− 3 cos2 θij). (2.37)

2.1.6 Quadrupolar Coupling

The quadrupolar interaction, referred to as the quadrupolar coupling, exists only

for nuclei with I > 1
2 . The interaction can be expressed as a second rank tensor:

HQ =
eQ

2I(2I − 1)~
I · V̂ · I (2.38)

where I is the spin of the nucleus, e is the charge of an electron, Q is the quadrupolar

coupling constant for the nucleus, and Vαα are the components of the electric field gradient

tensor in the PAS. If we define η = Vxx−Vyy

Vzz
as the asymmetry, q as the field gradient, and

the quadrupole frequency as:

ωQ =
3e2qQ

4I(2I − 1)~
, eq = Vzz (2.39)

Eq. (2.38) becomes:

HQ = ωQ

[
(I2
Z −

1
3
I2) +

η

3
(I2
x − I2

Y )
]

(2.40)



2.2. CALCULATING OBSERVABLES 14

with the principle values of the electric field gradient tensor |Vxx| ≤ |Vyy| ≤ |Vzz| and the

asymmetry 0 ≤ η ≤ 1.

2.2 Calculating Observables

Now that the relevant interaction Hamiltonians have been described in detail for

our NMR experiments, a brief review is provided on how to utilize the Hamiltonians to

calculate an NMR signal. Using the density matrix method, we begin by describing our

equilibrium density operator which is determined by the populations of states given by the

Boltzmann distribution [4]:

pi ∝ e−βEi (2.41)

where Ei is the energy of the state i and β = 1
kT . The dominant energy contribution to our

system is the Zeeman energy, thus we have:

ρeq = pi ∝ e−βω0Iz (2.42)

for the equilibrium density operator. Since the Zeeman energy is small compared to β, we

can expand the exponential as a Taylor series and truncate it as follows:

ρeq = 1− βω0Iz. (2.43)

The constant term and the constants do not evolve; therefore they will be dropped, leaving

the reduced density operator:

ρeq = Iz. (2.44)
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Under the influence of a Hermitian Hamiltonian, the time evolution of the density operator

can be described by the Liouville-von Neumann equation [5, 6]:

dρ

dt
= i[ρ,H]. (2.45)

This equation can be solved for a time-independent Hamiltonian to yield:

ρ(t) = e−iHtρ(0)eiHt. (2.46)

If the time evolution of the system can be divided up into several time intervals, each

governed by a time-independent Hamiltonian, the evolution can be expressed by:

ρ(t) = e−iHntne−iHn−1tn−1 · · · e−iH1t1ρ(0)e−iH1t1 · · · e−iHn−1tn−1e−iHntn . (2.47)

Using Eq. (2.47) and the Hamiltonians given in the previous sections, we can now calculate

the density operator at a given time. In order to generate a the detected signal from the

calculated evolution, ρ(t), we employ the operator I+ = Ix + iIy which reflects what is

detected by the NMR spectrometer. The signal, S(t), is then calculated by:

S(t) = Tr(ρI+). (2.48)

For example, the signal calculated from the NMR experiment which is simply a (π2 )y RF-

pulse is:

S(t) = Tr(e−iHte−i
π
2
Iyρeqe

iπ
2
Iye−iHtI+). (2.49)
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Here the RF Hamiltonian is expressed in terms of the pulse angle θ = ω1τ = π
2 and the spin

operator Iy. Immediately following the pulse, the density operator is:

ρ(0) = e−i
π
2
IyIze

iπ
2
Iy = Ix. (2.50)

The signal then simplifies to:

S(t) = Tr(e−iHtIxeiHtI+), (2.51)

and using the properties of the trace [7]:

S(t) = Tr(IxeiHtI+e−iHt). (2.52)

For an actual calculation, we must choose a basis set; in this case the most convenient is

the eigenstates of the Hamiltonian |i >. The signal is then:

S(t) =
∑
i

〈i|IxeiHtI+e−iHt|i〉 (2.53)

S(t) =
∑
i,j

〈i|IxeiHt|j〉〈j|I+e−iHt|i〉 (2.54)

S(t) =
∑
i,j

ei(ωj−ωi)t〈i|Ix|j〉〈j|I+|i〉 (2.55)

where ωi and ωj are the eigenvalues of the Hamiltonian and (ωj − ωi) is the transition

frequency. The difference between the diagonal elements of the Hamiltonian matrix (ωj −

ωi) provides the observed transition frequencies, and the product 〈i|Ix|j〉〈j|I+|i〉 gives the

relative amplitude of the signal at this frequency. Thus we have successfully calculated the
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NMR signal.

2.3 The Experimental Setup

The previous section describes a basic introduction to the elegant theory detailing

the interactions and methods for calculating NMR signals. However, the experiment is

implemented with real hardware which will be described briefly below.

The most important element required for any magnetic resonance experiment is

the magnet (with the exception of some novel zero-field experiments). In the early days

of NMR, the magnets were electromagnets, and the field was swept through the resonance

condition for a given continuous-wave (CW) RF irradiation. Today, spectrometers operate

in a pulsed mode, and the magnets are superconductors with a fixed field strength. The

superconducting coils of today’s magnets are usually constructed with several miles worth

of a Niobium-Titanium alloy that superconducts at 10 K. This is why a sophisticated liquid

nitrogen and liquid helium dewaring system is required.

The probe in a NMR experiment serves two roles; it applies a perturbation to

the sample and detects the sample’s response to the initial perturbation. The basic design

for the probe is a inductive-capacitive tank circuit which resonates at a tuned frequency

given by ω0 = 1√
LC

. The inductance defined by L is the total inductance for the circuit,

including the main inductor which surrounds the sample and actually detects the precess-

ing magnetization of the spins in the sample, while C is the capacitance provided by the

tuning and matching capacitors. This basic Faraday transmit-detect design for magnetic

resonance has performed amazingly well throughout the history of NMR and has yet to be
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truly challenged by other methods such as optical detection[8] or SQUID (superconducting

quantum interference device) detection[9].

Interestingly, the detection efficiency of the Faraday detector has been perfected

to the degree that the limits are now due to the thermal noise of the wire and other

electronic components. However, by cryogenically cooling the components this noise is

reduced. NMR probes having cryogenic cooling of the probe coil and preamplifier systems

are now commercially available. These probes provide better S/N on a 500 MHz magnet

than a standard probe on a 800 MHz magnet (at an ∼ $2M higher cost). Detection limits

are in the sub-µmol range, but more importantly many previously nonviable experiments

can be performed with a cryoprobe[10, 11].

The limitation on the circuit’s performance as a transmitter is obviously highly

system dependent; however, optimized commercial systems can provide amplitudes of ω1/2π

= 150-200 kHz (ω1 is the frequency at which the spins precess about the applied RF field).

In several of the experiments in this thesis, these limits presented some problems as is

addressed in the solid state chapters.

The remainder of the experimental setup consists of converting the detected cur-

rent in the coil into a digital signal; this has been treated in excellent detail by Fukushima[12].
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Chapter 3

Liquid Crystal NMR

3.1 Introduction to Liquid Crystals

In the introduction of this thesis the point was stressed that we desire to help

develop a structural method which is applicable where X-ray crystallography and liquid

state NMR are deficient. Liquid crystalline phases are applicable here because they span

a variety of systems including membrane proteins in their native state which is difficult

to study by either of the other two methods. As is described below, the liquid crystalline

phase has properties that are ideally suited to allow accurate determination of some of the

anisotropic interactions described above.

3.1.1 A ’Meso’-Phase of Matter

The study of liquid crystals began in 1888 when an Austrian botanist named

Friedrich Reinitzer observed that a material known as cholesteryl benzoate had two distinct

melting points[13]. In his experiments, Reinitzer increased the temperature of a solid sample
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and watched the crystal change into a hazy liquid. As he increased the temperature further,

the material changed again into a clear, transparent liquid. Because of this early work,

Reinitzer is often credited with discovering a new phase of matter - the liquid crystalline

phase.

Liquid crystalline materials generally have several common characteristics. Among

these are a rod-like molecular structure, rigidness of the long axis, and strong dipolar

moments and/or easily polarizable substituents.

The primary distinguishing characteristic of the liquid crystalline state is the ten-

dency of the molecules (mesogens) to align along a common axis, called the director and

denoted ~n. This is in direct contrast to molecules in the liquid phase (where there is

no intrinsic order) or the solid state (where molecules are highly ordered and have little

translational freedom). The characteristic orientational order of the liquid crystalline state

is between that of traditional solid and liquid phases, and this is the origin of the term

mesogenic state, used synonymously with liquid crystalline state.

To quantify how much order is present in a material, an order parameter (S) is

defined. Traditionally, the order parameter is given as follows:

S =
1
2
〈3 cos2 θ − 1〉 (3.1)

where θ is the angle between the director (~n) and the long axis of each molecule. The

brackets denote an average over all of the molecules in the sample. In an isotropic liquid,

the average of the cosine term is zero, and therefore the order parameter is equal to zero.

For a perfect crystal, the order parameter evaluates to one. Typical values for the order
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parameter of a liquid crystal range between 0.3 and 0.9. As a result of kinetic molecular

motion, the exact value is a function of temperature. This is illustrated in Figure 3.1 for a

nematic liquid crystal (to be discussed further in the next section).

The tendency of the liquid crystal molecules to point along the director leads to

a condition known as anisotropy. The anisotropic nature of liquid crystals is responsible

for the unique properties exploited by scientists and engineers in a variety of applications,

including magnetic resonance which is explored to a limited degree in this thesis.

3.1.2 Types

Liquid crystals (LCs) are typically organic compounds that flow like a liquid while

maintaining the long-range order of a solid. When crystals of a pure compound are heated,

they normally show a well-defined and characteristic melting point where the ordered crys-

talline lattice structure breaks down and the material becomes a liquid. In the liquid phase,

the individual molecules show no preferred spatial orientation. A unique feature of liquid

crystals is that, during the melting process, the well-ordered three-dimensional crystalline

structure transforms into a one- or two-dimensional ordered state. This results in a mate-

rial that has some of the optical properties of a solid combined with the fluidity of a liquid;

therefore this material displays a potpourri of unique properties. The molecular aggregates

(collection of molecules) of an LC compound are in the form of long cigar-shaped rods.

The orientation of these rod-like polar molecules forms the basis for classifying three basic

types of liquid crystals: smectic, nematic, and cholesteric. The smectic phase consists of flat

layers of cigar-shaped molecules with their long axes oriented perpendicular to the plane

of the layer. This is the most ordered LC phase. The molecules within each layer remain
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liquid nematic smectic A solid

Figure 3.1: This phase cartoon depicts an increasing degree of order from left to right.
Liquids clearly lack any positional or orientational order. The nematic liquid crystalline
phase lacks positional order but has orientational order. The smectic-A liquid crystalline
phase has molecules arranged in layers. Despite the layer structure, the phase lacks posi-
tional order within a given layer; however there is orientational order perpendicular to the
layer. Finally, solids have both positional and orientational order in all three dimensions.

oriented within each layer and do not move between layers. Figure 3.1 shows a structural

model of this smectic mesophase. The molecules lie with their long axes parallel in layers.

The molecules can move relative to each other, and consequently several types of smectic

structures can be formed depending upon the inclination of the long axes of the molecules

to the plane of the layers.

The nematic phase also has molecules with their long axes parallel, but they are

not separated into layers. Rather, their structural arrangement is similar to the ordinary

packing of toothpicks in a box. Figure 3.1 depicts such a nematic mesophase structure.

While maintaining their orientation, the individual molecules can translate freely up and

down.

The cholesteric mesophase can be defined as a special type of the nematic phase

(chiral nematic) in which the thin layers (one molecule thick) of mostly parallel molecules

have their longitudinal axes twisted (rotated) in adjacent layers at a defined angle. Each

layer is basically a nematic structure. The axes of alignment of contiguous layers differ by
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a small angle and produce a helix or progressive rotation of many layers in an LC material.

3.1.3 Magnetic Properties

The liquid crystalline phase alone is a very interesting physical system due to the

unique macroscopic properties of the system as determined by the microscopic structure

of the individual molecules. The structure of liquid crystal molecules also determines their

response to an applied magnetic field. Although the intermolecular interactions might be

expected to significantly contribute to the system’s response to a magnetic field, magnetic

properties are only weakly influenced by intermolecular interactions. Thus, the magnetic

response for non-ferromagnetic materials is simply the sum of the individual molecular

responses. The net magnetic properties of liquid crystal molecules are determined by their

electronic structure and can be characterized by their magnetic susceptibility. A negative

magnetic susceptibility is characteristic of a diamagnetic response, a positive susceptibility

is indicative of a paramagnetic response, and a permanent magnetization is indicative of

ferromagnetism. Both diamagnetic and paramagnetic liquid crystals are well known, and

even some ferromagnetic liquid crystals have been prepared[14].

Since the magnetic properties of liquid crystals are directly related to their molec-

ular structure and this structure is anisotropic, the uniform alignment of liquid crystal

molecules can be induced by utilizing this magnetic susceptibility anisotropy. Macroscopi-

cally, this magnetic susceptibility induces a net magnetization referred to as M when placed

in a magnetic field B as given below:

Mα = µ−1
0 χmagαβ Bβ (3.2)
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where µ0 is the permeability of free space and χmagαβ is the magnetic susceptibility. The free

energy density due to the magnetization is then:

gmag = −
∫
BαdMα

= −µ−1
0

∫
BαχαβdBβ

= g0 −
1
2
µ−1

0 χαβBαBβ. (3.3)

The susceptibility, χαβ , has the symmetry of the material, so expressing it in the principle

axes of χ gives:

gmag = g0 −
1
2
µ−1

0 (χ‖B
2
‖ + χ⊥′B2

⊥′ + χ⊥B
2
⊥)

= g0 −
1
2
µ−1

0 (χ‖ cos2 θ + χ⊥′ sin2 θ sin2 φ+ χ⊥ sin2 θ cos2 φ) (3.4)

where θ and φ are polar angles defining the orientation of B with respect to the principal

axes of the susceptibility. For a uniaxial material χ⊥′ = χ⊥ and:

gmag = g0 −
1
2
µ−1

0 B2(χ⊥ + ∆χ cos2 θ)

= g0 −
1
2
µ−1

0 B2χ⊥ −
1
2
µ−1

0 ∆χ(B · n)2. (3.5)

where ∆χ = χ⊥ − χ‖ and ~n is the director defining the principal axis for the susceptibility

for uniaxial materials. Eq. (3.5) shows the effect of the sign of ∆χ. When ∆χ is positive

the director aligns parallel to the magnetic field to minimize the free energy, and if ∆χ is

negative, the director aligns perpendicular to the magnetic field.
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n

B

Figure 3.2: Simple example of how a liquid crystal mesogen responds to an applied magnetic
field. Here the induced ring currents generate a field in opposition to the applied field, thus
the molecule tends to align to minimize its free energy.

The magnetic field aligning mechanism of the liquid crystal can be thought of as

a current induced in the bonding electrons of the nematogen which in turn generate an

opposing magnetic field according to the structure of the molecule. Typically, liquid crystal

molecules have aromatic groups which provide a large diamagnetic susceptibility for the

molecule as pictorially represented in Figure 3.2. The director ~n of Figure 3.2 will then

align according to Eq. 3.5 in order to minimize the free energy of the system.

3.1.4 Order Parameter

One of the most important aspects of an oriented liquid crystalline system is being

able to quantitatively describe the degree to which the system is aligned. This quantification

is required if the static NMR observables are to be accurately determined from the oriented

phase. Although determining the 3D alignment tensor appears to be a daunting task, it

can become more tractable by utilizing symmetry and the available observable interactions.

First we must develop a description of how to relate the molecule fixed frame

to the laboratory frame. The Zeeman interaction favors representation in the laboratory
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frame with axes represented as X,Y,Z. However, many of the interesting interactions in

NMR have different principal axes more closely related to the molecular structure such as

CSA, dipolar couplings and the quadrupolar interaction. It is more convenient to formulate

these interactions in the molecule fixed frame of x,y,z; however, this does require a frame

transformation. Of all of the tensors that occur in the high-field approximation, only the

ZZ components play an important role. Thus we perform the transformation given below:

AZZ =
∑
α,β

cos θZ,α cos θZ,βAαβ (3.6)

where the quantity cos θZ,α is the cosine of the angle between the laboratory-fixed Z-axis

and the molecule-fixed α-axis (α, β = x, y, z).

For any system, we wish to determine how the molecular axis system is tumbling

in terms of the laboratory axis system. Since the molecule is tumbling in the laboratory

frame, we must perform an ensemble average over all of the tumbling angles. This ensemble

average is referred to as the Saupe orientation tensor[15, 16], Sαβ :

Sαβ =
1
2
〈3 cos θZ,α cos θZ,β − δαβ〉 (3.7)

where the brackets denote the ensemble average and δαβ is the Kronecker delta function.

From Eq. (3.7) it can be derived that the tensor is both symmetric and traceless:

Sαβ = Sβα (3.8)∑
α

Sαα = 0. (3.9)
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Utilizing spherical coordinates where the Z-axis makes an angle θ with the z-axis

and the projection of the Z-axis onto the xy-plane makes an angle φ with the positive x-axis,

we obtain:

Sxx =
1
2
〈3 sin2 θ cos2 φ− 1〉

Syy =
1
2
〈3 sin2 θ sin2 φ− 1〉

Szz =
1
2
〈3 cos2 θ − 1〉

Sxy =
3
2
〈3 sin2 θ sinφ cosφ〉

Sxz =
3
2
〈3 sin θ cos θ cosφ〉

Syz =
3
2
〈3 sin θ cos θ sinφ〉. (3.10)

The values of these elements vary in the ranges:

− 1
2
≤ Sxx, Syy, Szz ≤ 1 (3.11)

−3
4
≤ Sxy, Sxz, Syz ≤ 3

4
. (3.12)

In the isotropic tumbling case, all of the elements of the S-tensor are zero:

∫ π

0

∫ 2π

0
Sαβ sin θdθdφ = 0, (3.13)

and Sαβ 6= 0 for anisotropic tumbling.
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3.2 Partially Averaged Observables

Utilizing the S-tensor we wish to rewrite the relevant Hamiltonians in a more

convenient form to take into account molecular tumbling. The chemical shielding is now:

σZZ =
1
3
(σ11 + σ22 + σ33) +

2
3

∑
α,β

Sαβσαβ . (3.14)

The isotropic term remains:

σiso =
1
3
(σ11 + σ22 + σ33), (3.15)

and the averaged anisotropic part is:

σZZ − σiso = σaniso
′
=

2
3

∑
α,β

Sαβσαβ . (3.16)

The chemical shift Hamiltonian of Eq. (2.18) must now be rewritten in the common molecule-

fixed frame:

HCS = −ω0(σiso + σaniso
′
)IZ . (3.17)

Similar to the chemical shielding, the averaged indirect spin-spin coupling is:

Jij,ZZ = J isoij +
2
3

∑
αβ

SαβJij,αβ = J isoij + Janiso
′

ij . (3.18)
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Eq. (2.23) can be rewritten as:

HJ = J isoij [Ii,ZIj,Z +
1
2
(Ii,+Ij,− + Ii,−Ij,+)]

+Janiso
′

ij [Ii,ZIj,Z −
1
4
(Ii,+Ij,− + Ii,−Ij,+)] (3.19)

or alternatively as:

HJ = J isoij Ii · Ij + Janiso
′

ij [Ii,ZIj,Z −
1
4
(Ii,+Ij,− + Ii,−Ij,+)]. (3.20)

Dipolar coupling has no isotropic component. Therefore the averaged interaction is written

as:

Dij,ZZ = Daniso′
ij =

2
3

∑
αβ

SαβDij,αβ, (3.21)

and from Eq. (2.27) we have:

Dij,αβ =
γiγjh

8π2r3ij
(3 cos θij,α cos θij,β − δαβ). (3.22)

Therefore, the dipolar Hamiltonian is now:

HD = 2Daniso′
ij [Ii,ZIj,Z −

1
4
(Ii,+Ij,− + Ii,−Ij,+)]. (3.23)

Similarly, the observable quadrupolar interaction is :

qZZ = qaniso
′
=

2
3

∑
αβ

Sαβqαβ , (3.24)
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and the averaged quadrupolar Hamiltonian is:

HQ =
qaniso

′

4I(2I − 1)
(3I2

Z − I2). (3.25)

In summary, for the total Hamiltonian we have:

H = −
∑
i

ωi,0(1− σisoi − σaniso
′

i )Ii,Z

+
∑
i<j

J isoij Ii · Ij

+
∑
i<j

2Daniso′
ij + Janiso

′
ij [Ii,ZIj,Z −

1
4
(Ii,+Ij,− + Ii,−Ij,+)]

+
∑
i

qaniso
′

i

4Ii(2Ii − 1)
(3I2

i,Z − I2
i ). (3.26)

3.3 Recent Approaches

Now that the basic principles of NMR in liquid crystals have been thoroughly

discussed, the experimental abilities and difficulties will be discussed below. The first thing

to note is what happens to the NMR spectrum of a molecule when it is dissolved in an

anisotropic phase such as a liquid crystal. As shown in Figure 3.4, the 19F spectrum of a

very simple molecule such as C6F5Cl which would normally exhibit three chemical shifts

in the ratio of 2:1:2 for the ortho:meta:para becomes extremely complex. Analysis of a

spectrum such as the one presented in Figure 3.4 would be incredibly difficult without some

information to help simplify the problem. Many NMR spectroscopists have studied different

methods to provide simplification of the 1D spectrum; these efforts will be briefly described

below.
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Figure 3.3: 1D 1H spectrum of methylene chloride (CH2Cl2) dissolved in the liquid crystal
I52

3.3.1 Simple One-Dimensional Experiments

For molecules such as methylene chloride (CH2Cl2) spectral interpretation is very

straightforward. In Figure 3.3, instead of the expected single proton resonance observed in

isotropic solution, we see two peaks split by several kilohertz due to the non-zero dipolar

coupling between the methylene protons when methylene chloride is dissolved in a LC

solvent. Although the spectrum of Figure 3.3 is extremely simple and easy to interpret, the

complexity of the spectrum rapidly increases when the number of coupling nuclei increases.

The upper limit for the level of complexity is determined by the number of single quantum
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transitions (Z1) from the expression[17, 18, 19]:

Z1 =

 2N

N + 1

 =
2N !

(N + 1)!(N − 1)!
(3.27)

where N is the number of spins. For N=4 this number is 56, for N=8 it is 11,440 and

for N=12 is 2,496,144. Clearly for molecules with more than a few spins, the number of

transitions is too large and the spectrum too complex for interpretation. For example, only

recently has the spectrum of ethylbenzene in a liquid crystal been fully assigned and the

structure determined from the analysis of the 1D spectrum[20]. However, in the case of

ethylbenzene, the analysis was performed with the aid of several simplifications including

deuteration to reduce the strength of some of the couplings (the γ of 2H is a fraction of 1H).

Another simplification utilized was the implementation of multiple quantum spectroscopy

which is discussed further below.

3.3.2 Multiple Quantum

One of the most exciting advances in the NMR of complex spin systems was

the utilization of multiple quantum (MQ) spectroscopy. In MQ spectroscopy, a complex

spectrum can be simplified by observing transitions other than the single quantum single

spin flip; instead, the signal that results from several simultaneous spin flips is observed[18,

21]. In general, as the number of observed quanta, n, is increased, the spectrum is simplified
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Figure 3.4: 1D 19F NMR spectrum of C6F5Cl in the liquid crystal I52

due to the reduced number of transitions. Generalizing Eq. (3.27) for n-quanta we see:

Zn =

 2N

N + n

 =
2N !

(N + n)!(N − n)!
. (3.28)

For example, a six-quantum spectrum of benzene in an oriented system obtained using

TPPI (time proportional phase incrementation) [21] would have only a single peak, the

five-quantum would yield two peaks, seven four-quantum peaks would exist, and so forth.

However, these n-quantum spectra require a difficult analysis for full interpretation since

the observed signal is the product of the couplings and chemical shifts of all of the nuclei

involved in the transition; thus, this again becomes a daunting task. Instead we turn to a

heteronucleus to aid in simplification of the coupled spectrum described below.
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3.3.3 Local Field

Another exciting advance in the determination of couplings, termed separated

local field (SLF)[22] experiments, utilizes the fact that a rare spin of type S (e.g. 13C)

among many strongly coupled abundant spins of type I (e.g. 1H) can ’feel’ the couplings

of each abundant I-spin if the homonuclear I-I couplings are turned off. In this manner,

a 2D correlation is obtained where each S-spin resonance is resolved along with every I-S

coupling to that particular S-spin.

This method was then further developed[17] to simplify interpretation of the cou-

pling even more by detecting the I-spins directly after the indirect evolution of the local-field.

This new method called proton detected local field (PDLF) improves upon the local field

idea by reducing the number of lines from 2N , as observed in the SLF experiment, to 2N

lines; this effectively changes the situation from one of exponentially increasing complexity

to a linear situation.

These types of experiments are ideal for hydrocarbon samples where natural abun-

dance carbon signal would ensure the dilute nature of the S-spin, and the protons would be

the I-spins. However, to date this method has been utilized only to a limited degree. This

is presumably due to the requirement that the simplification only truly applies in samples

such as liquid crystals where the observed dipolar coupling is isotropic and thus each cou-

pling is a doublet instead of an anisotropically broadened line as would be observed in the

solid state.

A demonstration of the type of interesting spectra that the PDLF method provides

is shown in Figure 3.6 which was obtained using the pulse sequence of Figure 3.5. In
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Figure 3.5: Proton Detected Local Field Pulse Sequence with PMLG Decoupling used to
acquire the 2D spectrum of Figure 3.6

Figure 3.5, the section labeled PMLG refers to the homonuclear decoupling sequence called

phase modulated Lee-Goldburg (PMLG)[23] whose effect is to eliminate the proton-proton

couplings in the indirect t1 dimension. The effects of this technique on our model system,

dichlorofluoronitrobenzene (C6H2Cl2FNO2), is shown in Figure 3.6. The vertical axis in

Figure 3.6 is the directly detected dimension which has a large 1HA-19F dipolar coupling

that produces the outer two doublets. The doublet structure of the 1HA resonance is due to

the 1HA-1HB coupling from across the benzene ring. The inner quartet seen on the vertical

axis then is from the 1HB-1HA coupling and the much weaker 1HB-19F. This information

can be inferred from knowing the structure of the molecule. However, with the addition of

the horizontal local field dimension in Figure 3.6, we have an additional dimension free of

the 1HA-1HB couplings; this allows the spin states of all of the coupling nuclei to be readily

observed from the contour plot.
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Figure 3.6: Proton Detected Local Field 2D Spectrum of C6H2Cl2FNO2 in a nematic liquid
crystal
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Chapter 4

Dynamic Director Experiments in

Liquid Crystals

4.1 Introduction Director Alignment

4.1.1 Advantages of Oriented Systems

Anisotropic interactions, such as dipolar couplings, have long provided a means for

extracting structure from molecules using nuclear magnetic resonance (NMR)[2, 24]. Tra-

ditional structural methods in liquid state NMR measure dipolar couplings via the nuclear

Overhauser effect (NOE) and use this information to solve three-dimensional structures in

isotropic solutions[25, 26]. The NOE method in liquids quantifies the cross-relaxation rate

due to dipolar coupling to extract 1/r6 distance information; methods in solid state NMR

are able to directly measure dipolar couplings with a 1/r3 dependence [27]. Although struc-

ture determinations using NOEs in isotropic solution have been fruitful, the 1/r6 distance
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constraints can be structurally limiting. Ideally, the 1/r3 dependence of dipolar coupling

that is observed in solids could provide valuable structural constraints without the lower

resolution typically seen in the solid state. The high-resolution observed in liquid state

NMR is the result of isotropic molecular tumbling which averages the anisotropic interac-

tions to zero. However, in the solid state the lack of isotropic motion gives rise to convoluted

broad lines resulting from the presence of these anisotropic interactions. In oriented liquid

crystals, anisotropic interactions, such as dipolar couplings, are only partially averaged.

This averaging gives rise to well resolved, sharp lines that can yield valuable structural

information.

The unique nature of the oriented liquid crystalline phase has provided an inter-

esting realm for the study of anisotropic magnetic interactions in NMR [28, 29, 30]. These

phases are aligned by an applied magnetic field while the individual molecules tumble about

a magnetic alignment axis called a director and labeled ~n in Figure 4.1. This molecular

tumbling property of liquid crystals yields an environment where anisotropic NMR interac-

tions can be observed to a reduced degree while maintaining the high resolution found in

the liquid state, see Figure 4.2.

Recent advances in the availability of reliable liquid crystalline phases have cat-

alyzed the measurement of dipolar couplings in routine protein structure determinations

where they are referred to as ‘residual dipolar couplings’[31]. The liquid crystalline systems

commonly used for residual dipolar coupling determinations are intentionally prepared to

only weakly align in the magnetic field. This weak alignment only reveals weak dipolar

couplings between directly bonded nuclei that can be easily interpreted as a small splitting

(∼5-10 Hz). This is in contrast to strongly aligned systems where the spectrum becomes
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Figure 4.1: (a) Cartoon of the oriented liquid crystalline sample with the rods representing
the liquid crystal molecules which align the solute molecule C6F5Cl in the direction of the
director ~n. (b) The effect of sample spinning on the oriented sample. The angle θR denotes
the spinning axis angle and η is the angle between the spinning axis and the director.
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Figure 4.2: One-dimensional 19F spectra of (a) neat C2F3I, (b) MAS of C2F3I dissolved in
a nematic liquid crystal spinning at 2 kHz, and (c) same sample as in (b) spinning at θR =
25◦.
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exponentially more complex with an increase in the strength and number of coupled spins.

However, strongly oriented systems can potentially provide valuable structural information

via measurable couplings from nuclei separated by more than a single bond. If the long range

couplings are measurable despite the increased spectral complexity, they provide strong ge-

ometrical constraints for use in three-dimensional structure determinations. Clearly, it is

beneficial to utilize a more strongly orienting system if possible; however we must make

efforts to simplify and facilitate interpretation of the increasingly complex dipolar coupled

spectrum.

Examples of even simple molecules such as C6F5Cl in a strongly aligned liquid

crystal have observable 19F-19F dipolar couplings on the order of kHz. When the observed

couplings approach the chemical shift differences of the coupled nuclei, the 1/r3 structural

information from the dipolar couplings is lost in a complex spectrum such as shown in

Figure 4.3a. When there exist strong homonuclear couplings between several nuclei, as

in Figure 4.3a, the system is termed second order or strongly-coupled and is a complex

spin system that is difficult to both interpret and manipulate[27]. However, if the dipolar

couplings are reduced to values smaller than their chemical shift differences, the useful

structural information can be easily read from the spectrum, as shown in Figure 4.3b; this

is what is termed a ‘first order’ type spectrum. The challenge in structure determination

is the fact that the structurally important couplings are often weak and masked by shorter

range dipolar couplings; thus we must attempt to introduce couplings as strongly as possible

while maintaining interpretability.
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Figure 4.3: 19F spectrum of C6F5Cl in the nematic liquid crystal I52 15% w/w obtained
(a) without sample spinning, (b) with sample spinning at 50◦, and (c) under magic angle
spinning. Spectra are shown in ppm from a reference frequency of 376.086 MHz.
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4.1.2 Techniques for Simplifying Spectra

Currently, a number of techniques exist that aid in the analysis and simplification

of coupled systems. However, most of them have difficulty in dealing with second order

type systems. Perhaps the most promising group of existing methods that are capable

of dealing with second order systems are the heteronuclear local field experiments[17, 32].

Although heteronuclear dipolar couplings provide a first order type spectrum with the aid

of homonuclear decoupling methods, the presence of more than one coupling can complicate

interpretation. In order to keep the interpretation of the dipolar couplings tractable, their

strength must remain minimal. This weak coupling requirement limits measurement to

directly bonded atoms and provides limited structural information; this is in contrast to

long range couplings that can yield excellent constraints in structure determinations.

In an effort to utilize more strongly dipole coupled liquid crystalline samples, sev-

eral multiple pulse experiments have been developed which reduce[33]or even eliminate[34]

homonuclear dipolar couplings to an extent which makes spectral interpretation viable.

These methods perform well even in strongly coupled systems and possess only a modest

scaling factor. Instead of employing RF pulses to reduce dipolar couplings, it is also possible

to simplify dipolar couplings in liquid crystals by reorienting the alignment director whereby

the intrinsic molecular motion performs the averaging[35, 36, 37, 38]. Director reorientation

methods have no associated scaling factor and work well even in strongly coupled systems.

It has been shown that the alignment of the liquid crystal director can be manipu-

lated readily with spinning according to the properties of the liquid crystal and the spinning

angle[39, 40]. Depending upon the anisotropy of the diamagnetic susceptibility (∆χ) of the
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liquid crystal[37]and the spinning angle with respect to the magnetic field, θR, the director

of the liquid crystalline phase will align parallel or perpendicular to the spinning axis. For

example, in a liquid crystal sample with ∆χ > 0, as is the case with the sample studied

in this work, the director aligns parallel to the spinning axis in the angle range of θR =

0◦ to 54.7◦ and perpendicular in the range of 54.7◦ to 90◦. Therefore, in the appropriate

spinning angle range, the alignment and thus the averaging of interactions in the sample

can be controlled.

The motivation for developing methods to simplify and facilitate the interpretation

of spectra of molecules in an oriented liquid crystalline phase is clearly shown in the one-

dimensional (1D) spectrum in Figure 4.3a. Although there is some resolution of peaks in the

dipole coupled 19F spectrum of oriented C6F5Cl, discerning the three chemical shifts and ten

dipolar couplings is extremely difficult. The level of complexity in Figure 4.3a approaches

the upper limit of 210 possible single quantum transitions (Z1) from the expression[41, 17]:

Z1 =

 2N

N + 1

 =
2N !

(N + 1)!(N − 1)!
(4.1)

where N is the number of spins. A complete analysis of this spectrum would require a

lengthy fitting routine that may or may not converge to the correct spectral parameters for

δaniso, Daniso
ij , and Sαβ . The order parameter, Sαβ , describes the molecular motions of the

molecules in the liquid crystalline phase and can be thought of as representing the average

molecular orientation in the phase. Further details on the orientational order parameter
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can be found elsewhere[15, 16]. Sαβ is defined by:

Sαβ =
1
2
〈3 cos θα cos θβ − δαβ〉 (4.2)

where θχ(χ = x, y, z) is the angle between the director and the molecular χ-axis and δαβ is

the Kronecker delta function (1 if α = β, 0 if α 6= β). The dipolar coupling in the molecular

frame is:

DMOL
ij,αβ = −hγiγj

2πr3ij
(3 cos θij,α cos θij,β − δαβ) (4.3)

where θij,χ is the angle between the internuclear vector and the molecular χ axis, γi and

γj are the magnetogyric ratios of the two nuclei, and rij is the internuclear distance. The

remaining anisotropic component of the dipolar coupling, Daniso
ij , now depends upon the

order parameter matrix, Sαβ , and DMOL
ij,αβ :

Daniso
ij =

2
3

∑
αβ

SαβD
MOL
ij,αβ . (4.4)

In the case of C6F5Cl, we assume the molecule is rigid so that rij of Eq. (4.3) is constant.

The chemical shift in an anisotropic phase is actually the sum of the isotropic and anisotropic

chemical shifts:

δobs = δiso + δaniso = δiso +
2
3

∑
α,β

Sαβδαβ (4.5)

where δαβ are the elements of the chemical shift anisotropy tensor in the molecule fixed

frame. Normally, both the isotropic and anisotropic J coupling would provide additional

contributions to consider in the spectral analysis. However, since the J coupling was not
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observable in this sample, it’s nominal contribution is not discussed further. If the order

parameter can be determined, anisotropic information about the molecules can be immedi-

ately derived from the two observables δobs and (to first order) Daniso
ij from the relationships

in Eqns. (4.4) and (4.5). However, as the spin system becomes more complex, assignment

is difficult and these relationships are less obvious.

Instead of employing a brute-force approach to the interpretation of a spectrum

such as in Figure 4.3a, the spectrum can be simplified first into more tractable portions.

In addition to the scaling of interactions resulting from Sαβ , the anisotropic components

of Daniso
ij and δobs can be further scaled if the director is aligned at an angle θR with

the magnetic field[37]. With the liquid crystal directors reoriented, Eqns. (4.4) and (4.5)

become:

δobs = δiso +
1
2
(3 cos2 θR − 1)δaniso (4.6)

Dobs
ij =

1
2
(3 cos2 θR − 1)Daniso

ij . (4.7)

For first order couplings this dependence is observed in Figure 4.4.

This scalability of the anisotropic interactions requires that the director axis is

single-valued with respect to the magnetic field. Since the liquid crystal solvent I52 has

the property of positive magnetic susceptibility anisotropy[42], the liquid crystal director

aligns parallel to the spinning axis at angles 0◦ < θR < 54.7◦[37]. Thus by simply rotating

the spinning axis to 50◦ with respect to the applied magnetic field, the dipolar couplings

are scaled by the factor 1
2(3 cos2 50◦− 1) , and a first order type spectrum is obtained. This

reduction of strong second order dipolar couplings to simple first order couplings is readily
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seen in Figures 4.3a and 4.3b. At a spinning angle of 50◦, the measured splittings are 250 Hz

for the ortho-meta coupling and 195 Hz for the two meta-para couplings. Although scalar

couplings could contribute to the observed splittings, the three bond scalar couplings were

not observable, as shown in the isotropic spectrum of Figure 4.3c. In addition, the dipolar

splitting of the single 19F of the solvent liquid crystal was also observed with a splitting of

1085 Hz (not shown in Figure 4.3).

Figure 4.3c demonstrates how a second order spectrum can be reduced to an

isotropic spectrum by spinning at the magic angle. With the nematic director aligned at

the magic angle, the sample spinning provides the appropriate mechanism to align the liquid

crystal director, and it is actually the uniaxial motion of the liquid crystal about the magic

angle that averages the dipolar couplings to zero. Since the liquid crystal motion is much

faster than the 4.5 kHz spinning speed, the effectiveness of the averaging is much greater

than could be obtained with spinning of a solid crystalline sample.

4.2 Variable Angle Spinning (VAS) Experiments

By reorienting the director at various angles, we obtain information regarding

the anisotropic interactions of the system. This information can be used to deduce the

structure of molecules dissolved in the liquid crystalline phase. The observed ortho, para,

and meta 19F isotropic chemical shifts of perfluorocholorbenzene in I52 are 0.0, 5.1 and 20.5

ppm with intensity ratios of 2:1:2 referenced to 376.073058 MHz on a spectrometer where

TMS (tetramethylsilane) resonates at 399.74179 MHz. The isotropic shifts reported were

obtained from Figure 4.3c where the sample’s director is oriented at the magic angle. In
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addition to the isotropic resonances, small peaks appear in the spectrum that are due to

spinning sidebands[43] occurring at integer multiples of the spinning frequency (ωR). The

spinning sidebands are the result of domains that are not aligned with the spinning axis;

their anisotropic interactions then become time dependent with the rotor frequency. Due to

the 1
2(3 cos2 θR−1) dependence of the aligning force, at exactly the magic angle, there is no

favorable alignment direction. Thus some liquid crystal domains begin to form a random

powder-type spectrum which results in spinning sidebands. These sidebands can be avoided

by spinning at the magic angle for short times or at angles near the magic angle (< 0.5◦

away).

4.2.1 Scaling Couplings: Second Order, First Order, Isotropic

Figure 4.5 demonstrates the scalability of the dipolar couplings from second order

to first order and ultimately to the isotropic spectrum. The isotropic spectrum obtained

at 54◦ has the resonances indicated with arrows to the perfluorochlorobenzene molecule.

The resonance furthest downfield arises from a single 19F in the I52 liquid crystal solvent.

Although this background solvent resonance has a measurable splitting at angles near the

magic angle, the peak quickly broadens and shifts out of the spectral window and is folded

into the opposite side causing a rolling baseline. The broadening of this peak is not the

result of couplings to the perfluorochlorobenzene but is instead the result of couplings to

the numerous protons in the I52 liquid crystal molecules. Of more interest is what happens

to the resonances from the perfluorocholorbenzene.

Examining the first order data in the angle range of 54◦ to 45◦, we are able to ex-

tract some information about the anisotropic interactions. However, even in a 1D first order
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Figure 4.5: 19F spinning spectra (ωR = 4 kHz) of perfluorochlorobenzene in I52 with the
spinning axis at the angle, θR, relative to the field as indicated in the figure.
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analysis, it is difficult to accurately assign the overlapping first order couplings. The dipolar

coupling of the ortho peak suggests that Daniso
ortho,meta = 2208 ± 7Hz; this is determined from

a fit of the first order doublet splitting to Eq. (4.7) which is a function of P2(cos θR) where

P2(cos θR) is the second order Legendre polynomial and equals 1
2(3 cos2 θR − 1). The meta

and para fluorines were both pseudo-triplets; thus it is difficult to accurately determine the

two different couplings present from a simple first order analysis. The 2D experiments de-

scribed below will demonstrate how a second dimension helps to separate even these simple

first order splittings. In addition to the perfluorochlorobenzene 19F , the liquid crystal 19F

first order dipolar splittings could also be fit as a function of P2(cos θR) to give Daniso
LC =

9915 ± 15Hz. In a similar fashion as with the dipolar couplings, the chemical shift could

also be fit using Eq. (4.6) to give δiso and δaniso. The isotropic shift values were fit from the

first order data to be: δisoLC = 16332 ± 10, δisoortho = 7713 ± 7, δisopara = 1921 ± 7 and δisometa =

0 ± 7 Hz. The anisotropic contributions to the shift, δaniso, were fit to be: δanisoLC = 12805

± 46, δanisoortho = 10045 ± 37, δanisopara = 12102 ± 44, and δanisometa = 10573 ± 39 Hz. These values

will be addressed again and compared to the results from the 2D correlations.

Couplings to 19F beyond the nearest neighbor 19F become apparent at angles

smaller than ∼ 50◦. At spinning angles of ∼ 40◦, the spectral complexity begins to make

interpretation difficult. Using the angle analysis of Figure 4.5, the spinning angles of 50◦

and 40◦ were selected to study in a SAS-2D mode with hopes that they would provide an

example of both first- and second order couplings correlated with an isotropic dimension.
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4.3 Switched Angle Spinning Probehead

In order to perform the experiments described in the previous section and dis-

cussed in more detail in the next section, we designed and constructed a novel SAS probe.

Experiments correlating the anisotropic dipolar coupled dimension with the isotropic MAS

dimension were performed using this home-built SAS probe that allows for angle hopping

from zero to the magic angle within 20 ms. The SAS probe used was a modified Chemag-

netics (now Varian Inc., Palo Alto, CA) 5mm HX MAS probe. Angle switching was done

by an API Motion (now Danaher Motion, Washington, DC) feedback stepping motor and

a pulse programmer triggered motor controller. In addition to rapid movement between

angles, a split solenoid coil design was utilized in the probe to allows for a consistent circuit

amplitude and phase independent of the angle of rotation. This is an important property

when attempting phase cycling in 2D experiments. See Figure 4.6.

Spinning liquid crystal samples commonly requires the use of rotor inserts to pre-

vent sample leakage and degradation. The use of rotor inserts typically reduces the filling

factor and may cause spinning instabilities that disrupt the liquid crystalline phase. These

problems were circumvented by using Teflon spacers and rubber stoppers. Using appropri-

ately sized rubber stoppers and spacers, stable spinning speeds of > 12 kHz for one week

with no sample loss were obtained for a typical liquid crystal sample . In a 5mm outer

diameter Chemagnetics pencil rotor, a 3 mm thick Teflon spacer is placed next to a 1 mm

thick rubber stopper; then another 5 mm thick Teflon spacer is inserted into each end of

the sample.
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Figure 4.6: Switched angle spinning (SAS) probe diagram. The whole unit (with the
exception of the split-solenoid coil) switches angles via a motor controlled string which is
attached to the pulley on the right hand side of the diagram.
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4.4 SAS: Parallel Director Alignment

The scaled interactions, discussed earlier, can be assigned in a two-dimensional

(2D) switched angle spinning (SAS) experiment. First the anisotropic interactions are

evolved at a given angle, and then the spinning axis is switched to the magic angle for

detection of an isotropic dimension. In this manner, the anisotropic interactions of the

spins, that can be complex and difficult to interpret in a 1D mode, are now separated in

the second dimension by their isotropic chemical shifts. Similar to previous work performed

in solids [44, 45] and in liquid crystals on first order dipolar couplings [38], the 2D SAS

experiment provides a method for assigning dipolar couplings in liquid crystals using the

isotropic chemical shift. Both first order and second order type 2D correlations will be

presented. Additionally, a method that reveals the anisotropic interactions of individual

spins in the liquid crystalline phase will be discussed.

4.4.1 First Order System: C2F3I

Introduction

The liquid crystal sample of ∼25% w/w iodotrifluoroethylene (Oakwood Products,

West Columbia, SC) in 4-octylphenyl-2-chloro-4-(4-heptylbenzoyloxy)-benzoate (Acros Or-

ganics, Belgium) was prepared under nitrogen. In all of the following cases, the 19F spectra

of iodotrifluoroethylene were recorded with a center frequency of 376.095042 MHz on a sys-

tem where TMS resonates at 399.741790 MHz. The 19F spins of iodotrifluoroethylene are

labeled A, M, and X corresponding to their respective resonance frequencies as depicted in

Figure 4.7.
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Figure 4.8: Switched Angle Spinning COSY45 Pulse Sequence.

In order to observe the isotropic-anisotropic correlations, a SAS version of the

well-known COSY (SAS-COSY) experiment was used as shown in Figure 4.8. The pulse

sequence begins with a 90◦ pulse and a t1 evolution period. Then a 45◦ pulse stores part

of the signal to allow angle switching to the magic angle. After this a second 45◦ pulse

recalls the signal for observation in t2 under magic angle spinning. A 45◦ pulse was used

in order to observe more intense signal in the connected transition cross peaks versus the

non-connected transition cross peaks [46]. The SAS-COSY pulse sequence is well suited to

the requirement of storing the desired signal during the angle switching.

Results: 1D Characterization

The isotropic spectrum of the neat liquid is shown in Figure 4.2a. To demonstrate

the ability of MAS to produce an isotropic spectrum, the liquid crystal MAS spectrum

is overlaid with the neat liquid isotropic spectrum (Figure 4.2b). The relative shifts and
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splittings due to J coupling are nearly identical in the two spectra. However, there exists an

upfield shift of approximately 1 kHz when the C2F3I is dissolved in the liquid crystal. The

origin of the upfield shift has been generally observed in these types of systems and is most

likely a result of “π stacking” in this highly ordered system[47]. Another minor difference in

the MAS spectrum in Figure 4.2b is the appearance of small spinning sidebands; these are

the result of a small amount of thermal disorder that gives rise to a degree of powder-like

orientations in the sample. Figure 4.2c shows the 19F spectrum when spinning at an angle

of 25◦ from the magnetic field; note the introduction of dipolar splittings while maintaining

a first order type spectrum. In addition, there is a further non-uniform peak position shift

from Figure 4.2b to Figure 4.2c due to the CSA.

The chemical shift dependence of the spinning angle,ωR, was investigated as shown

in Figure 4.4a. This dependence results from the anisotropic contributions from the chemical

shift. The slope of the linear correlation in Figure 4.4a contains information about the

chemical shift anisotropy as it exists in this anisotropic environment by:

δobs = δiso + δaniso·P2(cosθR) (4.8)

where δiso is the isotropic chemical shift, δaniso is the anisotropic component of the CSA as

it exists after the motional averaging from the liquid crystal environment, and P2(cosθR)

is the second order Legendre polynomial. The linear correlation parameters for the three

spins (A, M, and X) are shown in Table 4.1. Estimates of the CSA can be derived from

the δaniso parameter; however interpretation of the CSA tensor requires knowledge of the

molecular order parameter which is beyond the scope of this paper.
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Spins δiso (Hz) δaniso (Hz)

A 10578 -1210
M 1061 -3319
X -12437 -2079

Table 4.1: Chemical shift parameters from C2F3I

Shown in Figure 4.4b is the spinning angle dependence of the observed dipolar

couplings 2Daniso(θR) + J as it fits to the linear relation:

∆obs
ij = 2Daniso

ij ·P2(cosθR) + J isoij (4.9)

where ∆obs
ij is the observed splitting on spins i and j and Daniso

ij is the dipolar coupling in the

liquid crystal. In Figure 4.4b we obtain the expected linear dependence of 2Daniso
ij (θR)+Jij

versus P2(cosθR) with the intercept at the J coupling values. The sign of J can be derived

from the observation of whether the 2Daniso)(θR)+J
ij value passes through zero in combination

with the assumed negative sign of the dipolar interaction. In order to determine the absolute

sign of the dipolar interaction and thus the sign of the J couplings, it is necessary to know

the orientational order parameter of C2F3I in the liquid crystal. Based on the assumption

that the planar molecule would orient with the molecular plane parallel to the liquid crystal

director, the dipolar coupling can be assumed to be negative. Courtieu et al. [36] have used

similar arguments in assigning the sign of the dipolar couplings in C2F3Br. We therefore

assign JAM and JAX positive values and JMX a negative value since only 2Daniso
MX (θR)+JMX

did not pass through zero (Table 4.2). Additionally from Figure 4.4b we obtain what we

would expect to be the 2Daniso(0◦) + J values for a non-spinning sample where the scaling
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Spins Jiso (Hz) 2Daniso (Hz)

AM 69.0 -472.4
AX 51.2 -596.1
MX -128.3 -226.4

Table 4.2: Coupling Constants from the Line Fits in Figure 4.4

of the dipolar interaction is unity. The spectra obtained with and without spinning at 0◦

were nearly identical (not shown).

While spinning at the magic angle, significant thermal disordering occurred within

5 seconds of setting the spinning axis to exactly the magic angle. This thermal disordering

was overcome by simply setting the spinning angle slightly less ( 0.1◦ ) than the magic

angle such that slight orienting forces still existed, and yet an isotropic spectrum was still

observed.

Results: 2D Correlations

After sufficiently characterizing the interactions in our liquid crystal sample, we

will discuss the main goal of this work: a demonstration of the correlation of isotropic

chemical shifts with anisotropic dipolar couplings using SAS. In order to illustrate the effects

of the liquid crystal and SAS on the COSY experiment, we first performed the conventional

COSY-45 experiment without angle switching on the neat liquid C2F3I. The conventional

COSY-45 pulse sequence is simply: 90◦ - t1 - 45◦ - t2. Figure 4.9a illustrates how the

J couplings provide cross peak patterns that indicate the relative signs of the directly

connected transitions. The cross peak regions are enlarged ten-fold relative to the scale of

the underlying spectrum. The dashed lines act as a guide to reveal the connected cross
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peaks. The projected axes show that only the J coupling is observable in both dimensions,

equivalent to the spectrum in Figure 4.2a.

In contrast, the dipolar-isotropic correlation obtained by applying the SAS-COSY

experiment of Figure 4.8 on the liquid crystal sample is shown in Figure 4.9b. The liquid

crystal sample was spinning at 2 kHz and hopped from 25◦ relative to Bo in ω1 to the magic

angle in ω2. The projected dipolar axis (ω1, horizontal) reproduces the spectrum observed

by simply spinning at 25◦ without angle switching as seen in Figure 4.2c. The projected ω1

dimension appears somewhat broadened due to a combination of a limited number of points

sampled during t1 (512 points) and minor angle inaccuracies (< 0.1◦). The projection onto

isotropic ω1 or ω2 dimensions in Figure 4.9a is effectively identical to the projection onto

the isotropic MAS dimension (ω2) in Figure 4.9b minus solvent effects. The differences in

the two projected axes in Figure 4.9b reveal not only the introduction of dipolar coupling

but also changes in peak positions due to the CSA contributions. The 10x magnified insets

demonstrate how the 2Daniso + J values that evolved during ω1 are readily revealed by the

separation provided by the J coupling in ω2. The measured splittings from the expanded

insets were ∆AM = 320 ± 8 Hz, ∆MX = 199 ± 4 Hz, and ∆AX = 410 ± 10 Hz. The values

measured in the SAS-COSY experiment agree well with the values as predicted from the

linear correlations from Figure 4.4.

The cross peak shapes in this magnitude spectrum are easily understood when

considering the spin states of all three fluorines. The directly connected transitions form

the corners of the two rectangles in each cross peak, and the slope of the line connecting

the center of the two rectangles is determined by the sign of the indirect spin J coupling

relative to the observed dipolar coupling (which are all assumed negative in this case). For
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Figure 4.9: (a) The normal COSY-45 pulse sequence performed on the neat liquid C2F3I.
(b) The SAS-COSY45 performed on 15% w/w C2F3I in a liquid crystal.
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example, the AX cross peak (upper left) in Figure 4.9b has a negative dipolar coupling

in ω1 and a negative JMX in ω2; thus the slope of the line connecting the two rectangles

is positive. The coupling patterns were reproduced using the Gamma library [48] with

the J and 2Daniso + J values from Table 4.2. In the simple system investigated here,

the dipolar coupling assignments are trivial; however, this demonstration reveals how the

dipolar couplings of only connected transitions are spread out in the second dimension by

their respective isotropic chemical shifts.

We expect spin diffusion to be a significant problem when dealing with strongly

coupled systems where the barriers to spin diffusion are very low. In order to deal with the

potential problems of spin diffusion, we are keeping the couplings weak by spinning at angles

close to the magic angle and minimizing the hopping time during which significant dipole-

dipole coupling take place. This initial work was done utilizing the absence of any fluorine

in the liquid crystal itself to avoid problems with background signal. However, extending

this method to the more general case with protons requires contending with the potentially

large, resolved signal due to the liquid crystal background. Investigations addressing these

issues are currently underway.

Conclusions

The liquid crystal SAS-COSY experiment described in this paper illustrates how

the isotropic chemical shift correlated with dipolar couplings reveals the dipolar coupling

network. The ability to manipulate the liquid crystal director and thus the underlying inter-

actions provides a large degree of experimental utility, particularly in a 2D mode. Numerous

advantages are gained by performing measurements of dipolar couplings in the SAS mode
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presented here. First, isotropic chemical shifts are maintained in a 2D correlation with-

out the scaling normally associated with multi-pulse homonuclear decoupling techniques.

In addition, the homonuclear couplings can be scaled at will in order to maintain a first

order type spectrum through the adjustment of the hopping angles. Lastly, by correlat-

ing the dipolar information with the isotropic chemical shifts in one experiment, this type

of technique may be useful for more complex correlations involving multiple heteronuclei.

Even more information may be extracted for interesting systems including organic systems,

proteins, nucleotides and lipids. The applicability of this technique is only limited by the

selection of a strongly orienting system to allow for the observation of the information rich

anisotropic interactions such as dipolar couplings and CSAs.

There currently exist a variety of different orienting systems that immediately

lend themselves to investigation with the aid of the SAS-COSY technique. For example,

organic liquid crystals, phage, bicelles, and polyacrylamide gels would be amenable to these

types of studies. Although in this investigation sample spinning was used to manipulate

the director, some orienting systems such as polyacrylamide gels do not require sample

spinning. By facilitating the study of residual dipolar couplings in the liquid state, this

approach should allow insight into the detailed structure of partially aligned proteins and

nucleic acids.

4.4.2 Second Order: C6F5Cl

Introduction

To demonstrate the ability to scale a second order spectrum of an oriented liquid

crystal sample, the 19F NMR was observed for the small molecule perfluorochlorobenzene
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Figure 4.10: A modified SAS-COSY pulse sequence used in Figures 4.11 and 4.12. The
upper half shows the radiofrequency pulses with the narrow blocks representing a 90◦ pulse
and the wider block representing a 180◦ pulse. The lower half shows how the spinning angle,
θ , changes during the pulse sequence with direct detection at the magic angle (54.7◦).

(C6F5Cl) dissolved in a nematic liquid crystal solvent. The second order 19F spectrum of

perfluorochlorobenzene (Sigma-Aldrich) 15% w/w in the nematic liquid crystal I52 (EM

Industries) is shown in Figure 4.3a. The liquid solute perfluorochlorobenzene was dissolved

in the liquid crystal I52 by slow mixing for 5 minutes. The liquid crystalline mixture was

then placed in a 5 mm outer diameter ceramic rotor with rubber sealing gaskets[38].

The pulse program used to correlate the dipolar couplings with the isotropic chem-

ical shifts was a modified SAS-COSY type experiment shown in Figure 4.10. Following an

initial 90◦ pulse, the sample evolved while spinning off of the magic angle to allow for dipolar

couplings in t1. The evolved anti-phase magnetization was then converted to in-phase z-

magnetization by a 90x-τ/2-180-τ/2-90−y where τ was constant and approximately 1/(4D)

and D is the average dipolar coupling at the initial spinning angle. The spinning axis was

then switched to the magic angle by triggering the motor controller. Then a 90◦ pulse was

applied to observe the isotropic signal. Following t2 acquisition, the angle was switched

back to the initial evolution angle for relaxation.
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Results

The goal of this work was to examine how an isotropic dimension might provide ad-

ditional information in what are inherently strongly dipolar coupled systems using a SAS-2D

correlation. In this simple sample we wish to demonstrate the feasibility of observing cross

peaks to facilitate dipolar coupling assignments. Using the pulse sequence of Figure 4.10

on the same sample as shown in Figure 4.3, C6F5Cl in I52, the first order 2D correlation

of Figure 4.11 was obtained. The angle θR for the initial dipolar evolution was set to 50◦

to scale the couplings sufficiently to obtain a readily interpretable first order spectrum as

seen in Figure 4.3. In Figure 4.11 the observed cross peaks of different spins reveal not only

the coupled spins but also the coupling values in a clearly separated manner. The furthest

downfield ortho 19F has an observable cross peak only with the upfield meta 19F, and the

single midfield para 19F has an observable cross peak to two neighboring meta 19F. The

para-meta cross peaks are not as well resolved due to the one-half intensity of the para peak;

however the cross peak on the right of the spectrum clearly shows the expected +/- pattern.

The +/- pattern of the cross peaks results from the modulation of the transferred coher-

ence as sin(Dt1) instead of the familiar in phase cos(Dt1). The sign difference also helps to

clearly separate the two overlapping doublets of the meta and para 19F which are difficult

to distinguish in the 1D spectrum. By utilizing the separation provided in Figure 4.11, the

observed couplings at the cross peaks were determined to be Dobs
ortho,meta = 272 ± 6 and

Dobs
meta,para = 181± 5 Hz. The measured value of Dobs

ortho,meta from the 2D data spectrum is

within experimental error of the 1D data. Since only the Dobs
ortho,meta was readily measurable

from the 1D data, we do not compare the value of Dobs
meta,para.
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Figure 4.11: 19F SAS-COSY 2D spectrum of C6F5Cl in the liquid crystal I52 obtained with
the pulse sequence of Figure 4.10. The sample was spinning at 4 kHz and switching angles
(θR) from 50◦ in ω1 to the magic angle in ω2.
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Another notable point in Figure 4.11 is the fact that there is a slight shift from the

isotropic chemical shift values in the indirect dimension due to the non-zero contribution

from the chemical shift anisotropy according to Eq. (4.6). By comparing the resonance

frequencies of the diagonal peaks in the isotropic and anisotropic dimensions, the CSA

contributions were fit to Eq. (4.6) to gives values within the error of the measurements from

the 1D data. Although the isotropic shift, δiso, was directly determined from the isotropic

dimension, the values were identical to those fit in the previous section and observed in

Figure 4.3c. In combination with a quantitative determination of the order parameter of the

liquid crystalline phase, structural information could be readily obtained from the CSA and

dipolar couplings as determined from the cross peaks in this method. Overall, Figure 4.11

successfully assigns the first order couplings to the appropriate isotropic chemical shifts.

Although the analysis of the first order couplings could be easily assigned in Fig-

ure 4.11, the correlation of the second order spectrum obtained at 40◦ with the isotropic

spectrum, shown in Figure 4.12, demonstrates how rapidly the spectrum becomes difficult

to interpret. Again, using the pulse sequence of Figure 4.10, the characteristics of the

first order spectrum are evident as a doublet and two triplets with some sub-structure due

to coupling beyond the nearest neighbor 19F. This is observed directly by the appearance

of additional cross peaks where there were previously none in the first order correlation;

however it is difficult to quantitatively determine the strength of all of the couplings in the

sub-structure. Although the value of τ could be adjusted to emphasize a particular strength

coupling in the correlation, we instead used a value determined by the average of the three

largest perfluorochlorobenzene couplings.

Adding to the difficulty in the interpretation of the cross peaks is a phase distortion
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Figure 4.12: 19F SAS-COSY 2D spectrum of C6F5Cl in the liquid crystal I52 obtained with
the pulse sequence of Figure 4.10. The sample was spinning at 4 kHz and switching angles
(θR) from 40◦ in ω1 to the magic angle in ω2.
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Figure 4.13: Director reorienting pulse sequence which first evolves with the directors
aligned perpendicular to the spinning axis in t1 near the magic angle and then with the
director parallel to the spinning axis in t2 also near the magic angle.

which most likely arises because of ill-defined pulse angles due to the near second order type

coupling system[27]. It should be noted that the 1D spectrum shown at the top of the 2D

contour plot is not a projection but instead is the 1D spectrum obtained under the SAS-2D

conditions. However, in both the first order and second order 2D correlations, the indirect

evolution is clearly separated by each of the isotropic chemical shifts.

4.5 SAS: Switched Director Alignment

4.5.1 Introduction

The pulse sequence in Figure 4.13 was used to produce an alternate anisotropic-

isotropic spectrum. This correlation was obtained with the liquid crystal directors aligned

perpendicular to the spinning axis in t1 and again with the directors aligned with the magic

angle in t2. In this experiment, spinning sidebands resulting from the time dependent

director alignment in t1 are correlated with the isotropic chemical shifts.
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4.5.2 Results

The previous section described a method for obtaining correlations where the di-

rector alignment is maintained parallel to the spinning axis while the director is manipulated

between the magic angle and 0◦. However, the director alignment in this liquid crystal can

also be reoriented to the perpendicular phase via spinning the sample at angles 54.7◦ < θR <

90◦ to provide spinning sidebands of the anisotropic interactions as shown in Figure 4.14a.

In this spectrum the spinning sidebands of the 19F appear at 2ωr for all of the resonances.

The spectrum demonstrates how the directors of the sample have oriented at 90◦ with re-

spect to the spinning axis, and the signal is modulated according to Eq. (4.10). Instead of

a simple scaling of the interactions with a change in θR as in Eq. (4.7), the signal now has

a time dependence of the form:

S(t, θR, η, ψ, ωR) ∝ 1
2
(3 cos2(θLab(t))− 1)

∝ 1
4

(
3 cos2 θR − 1

) (
3 cos2 η − 1

)
+

3
4

sin2 θR sin2 η cos(2ωRt+ 2ψ)

+
3
4

sin 2θR sin 2η cos(ωRt+ ψ) (4.10)

which for θR=54.7◦ reduces to:

S(t, θR, η, ψ, ωR) ∝ +
1
6

sin2 η cos(2ωRt+ 2ψ)

+
3
4

sin 2(54.7◦) sin 2η cos(ωRt+ ψ) (4.11)
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Thus, when spinning this sample at an angle slightly larger than the magic angle, η changes

from zero to 90◦, the cos(ωRt) vanishes, and all of the anisotropic interactions are modulated

by cos(2ωRt) and scaled by a factor of 1
6 . Then interactions can be determined from the

analysis of the sideband intensities in a manner similar to that used in the solid state[49].

However, the sidebands tend to overlap, making this type of analysis difficult.

A method to aid in resolving the overlapping sidebands of Figure 4.14a would be

to correlate a spinning sideband spectrum with an isotropic spectrum in a SAS experiment

similar to the one described in the previous section. In order to perform this type of exper-

iment, the directors must be reoriented parallel to the spinning axis to yield an isotropic

dimension. Assuming the director reorientation is rapid, this can be accomplished by the

SAS experiment shown in Figure 4.13. The experiment begins with the directors aligned

perpendicular to the spinning axis, and t1 is evolved. Then the angle is switched to 50◦

to rapidly orient the directors parallel to the spinning axis. Finally, the angle is switched

again to slightly less that the magic angle to observe the isotropic spectrum for the direct

dimension. Following acquisition, the spinning axis is switched back to 55◦ for relaxation

and reorientation to the perpendicular phase. The perpendicular evolution is obtained at

an angle of 55◦ to keep resonances sharp since they otherwise broaden due to other terms

arising from a non-zero value of P2(cosθR).

The 2D correlation obtained using the sequence of Figure 4.13 is shown in Fig-

ure 4.14b. The sideband patterns are now clearly separated by their isotropic chemical

shifts, and the anisotropic information encoded in the sidebands can be easily fit. How-

ever, the anisotropic information is actually a combination of CSA and dipolar couplings

as scaled by the factor P2(cosθR) and modulated according to Eq. (4.11). In order to sep-
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Figure 4.14: (a) The 1D perpendicular phase spinning sideband spectrum with θR=55◦. (b)
2D SAS isotropic-sideband correlation generated with the pulse sequence in Figure 4.13.
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arate the contributions from these two interactions, RF pulses could be applied during t1

evolution to refocus the chemical shift. Alternatively, a homonuclear decoupling sequence

such as Lee-Goldburg[34] could be applied to remove the homonuclear couplings and leave

the chemical shift. In Figure 4.14b the principle is easily demonstrated. To the right of the

2D contour plot are 1D slices showing the sideband patterns for each spin. The furthest

downfield resonance again corresponds to the liquid crystal background and has significantly

more intensity than the three resonances from the perfluorochlorobenzene. In this case we

expect many sidebands for all of the resonances in the sample due to the presence of both

large dipolar couplings as well as large 19F CSAs.

Although this 2D correlation is of limited use in the case of this sample, quantita-

tive determination of the CSA could be performed for samples containing natural abundance

13C under 1H decoupling where only the CSA contributes to the sideband pattern. This

type of experiment could prove extremely valuable for protein structure determination in

13C labeled samples.

4.6 Conclusions

With experimental ease, the second order dipole coupled spectrum can be reduced

to a first order spectrum, and then the couplings can be assigned via their isotropic chemical

shifts. This method takes the laborious task of assigning the numerous peaks in the second

order spectrum and reduces it to the simple task of reading off cross peaks in the 2D

SAS correlation. Some would argue that much of the valuable structural information has

been lost by reducing the couplings to first order; however this method has the flexibility
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to perform as much or as little averaging as the experimenter desires. By performing a

SAS correlation between 0◦ and the magic angle, all of the spectral complexities of the

non-spinning case may be recovered.

These methods are applicable to many types of liquid crystals whether they are

strongly or weakly oriented, and it is not limited to liquid crystals whose directors can

be aligned with sample spinning. For example, samples that achieve alignment through

polymer alignment can simply be reoriented by moving the polymer alignment axis. There

exist several possible opportunities to utilize switched angle correlation experiments to

obtain valuable structural insight into aligned samples.

Implementation of the techniques described here may be beneficial for the inter-

pretation of dipolar couplings and CSAs in liquid crystalline phases. A technique where

correlations are performed at successively smaller angles would provide insight into the

mechanism by which a first order spectrum transitions into a second order spectrum.

A further application of this technique is to explore interesting systems, for exam-

ple proteins associated in an oriented bicelle phase. This technique could provide the great

benefit of maintaining the isotropic chemical shift for assignment while having the flexibility

to scale the dipolar couplings for optimal structural interpretation in a single sample.

4.7 Future Directions

One of the goals of studying oriented systems with SAS correlations was to apply

the newly developed methodologies to systems of interest such as membrane proteins. It

has been known for some time that lipid bicelles made up of a particular ratio of long and
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Figure 4.15: 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine (DMPC) molecule which is a
lipid component of bicelles

short chain lipids (such as DMPC in Figure 4.15) can form a pancake-like mesogen which

orients in a magnetic field[31, 50].

By utilizing the aligned bicelle phase, the dipolar couplings can again be turned

off and on as demonstrated in the previous section. Unlike what is achievable using RF

homonuclear decoupling, such as MREV-8 (shown in Figure 4.16), MAS of the oriented

phase eliminates the couplings without any associated scaling factor. Without the improved

performance offered by MAS, a relatively low resolution spectrum is obtained; this can be

observed when the static MREV-8 spectrum of Figure 4.16 is compared to the 5 kHz MAS

spectrum of the same sample. In this way, we are able to obtain isotropic liquid-state

resolution while being able to turn the couplings off and on.

In addition, the interactions in the bicelle sample can be scaled at will by changing

the spinning axis. As is shown in Figure 4.17, a splitting of the 2H signal from water

exchanging on and off the surface of the oriented bicelles reveals the averaged quadrupolar

interaction. Just as in the case with the dipolar couplings previously discussed, this splitting

dependence is a function of P2(cos θR). This dependence is plotted in Figure 4.18.
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Figure 4.16: The 1H NMR spectrum of oriented bicelles. Using the MREV-8 homonuclear
decoupling sequence and also MAS to remove the strong 1H-1H dipolar couplings in the
oriented sample.
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Figure 4.18: Correlation plot of the 2H NMR splitting of the spectra in Figure 4.17 as a
function of P2(cos θ)
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To demonstrate the abilities of SAS local-field experiments, Figure 7.4.4 shows a

7-spin simulation of the expected spectra in a SAS proton detected local-field experiment.

The 2D correlation reveals each of the individual 31P-1H couplings in the lipid molecule

(see Figure 4.15) which is separated by the corresponding proton’s isotropic chemical shift.

The continuation of this work might provide interesting structural information

about the conformation of lipids in bicelles; however we eventually hope to incorporate

membrane proteins into the bicelle’s lipid bi-layer. In this way, a PDLF experiment similar

to Figure 7.4.4 could be performed on the associated membrane protein while assigning

potentially all of the 15N-1H and 13C-1H dipolar couplings. With the ability to assign long-

range dipolar couplings, this method would provide strong structural constraints which are

difficult to determine by any other method.
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Figure 4.19: SAS-PDLF Simulation of an oriented bicelle
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Chapter 5

Solid State NMR

As was clearly demonstrated in the phase cartoons of Figure 3.1 the solid phase is

different from the liquid crystalline phase discussed in Chapters 3 and 4. With the lack of

molecular tumbling of the solid state relative to liquids and liquid crystals, the interactions

observed are in their full anisotropic form as was briefly introduced in Chapter 2.

5.1 Issues in the Solid State

The challenge with solid state NMR is how to observe accurately a single interac-

tion among a chorus of very strong interacting ones. Take for example a simple hydrocarbon

molecule in the solid state and attempt to observe the proton NMR signal. Due to the 1H-

1H dipolar coupling of 120.12 kHz

Å3
any system with more than a few protons is a strongly

coupled many body spin system. Even when a solid sample is a simple two spin system the

resonance lines are typically very broad compared to what is observed in liquids or liquid

crystals. The static NMR spectrum of an isolated dipole coupled pair, usually termed a
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Pake-doublet, is depicted for the homonuclear case in Figure 5.1. The range of frequen-

cies in Figure 5.1 are due to the θ dependence in Eq. (2.37) which ranges from −3
2d (where

d = −γiγj~
r3ij

µ0
4π

) to 3
4d, and the negative of this is obtained by a change in spin state of one of the

two spins. With dipolar interactions typically on the order of kilohertz, having more than a

few isolated pairs of spins having overlapping Pake-doublets would be difficult to deconvo-

lute. Since most samples of interest are not sets of isolated pairs, but are instead a network

of strongly coupled spins, in order to observe high resolution spectra this broadening must

be overcome.

In addition to the lineshapes obtained due to dipolar coupling, the chemical shift

anisotropy (CSA) also has an orientation dependence with respect to the field as was de-

scribed by Eq. (2.18). This orientation dependence is depicted in Figure 5.2, where as the

molecule changes orientation in the field, the resonance frequency changes according to the

chemical shift tensor PAS components σ11, σ22, and σ33.

The combination of broadening due to a non-ideal dipole coupled spin system and

the chemical shift anisotropy make for a static solid spectrum which would be extremely

broad for powders of rigid crystals. Of course, if the sample were a single crystal and all

of the molecules were aligned in an identical fashion, this would make for a much sharper

spectrum with relatively narrow resonance lines. However, sufficiently large single crystals

are often difficult to grow for any given sample of interest, therefore, randomly distributed

crystallites in the form of a powder are usually what is studied.
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Figure 5.1: Diagram of the homonuclear dipolar powder pattern. The spheres at the top
of the figure indicate what frequency components the spatial powder contributes to the
lineshape.
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5.1.1 Decoupling Strong Interactions

Given the broad nature of solid state NMR, in order for studies to provide spec-

troscopic information about the structure of the molecules studied, the resolution must be

improved. Aside from CW and homonuclear decoupling which were mentioned in Chap-

ter 3 the most utilized decoupling method in solids is magic angle spinning (MAS). By

spinning the sample at the magic angle, spin interactions such as dipolar coupling and CSA

become time dependent. If the spinning speed is much larger than the interactions, only

the time independent parts survive and the spectrum is that of the isotropic chemical shift

(for spin-1
2 nuclei). When the interactions are on the order of the spinning speed, spinning

sidebands occur at frequencies ωr which map out the time dependent interaction. Details on

the origin of the sidebands can be found in Mehring’s book[3]. It is sufficient to realize that

by measuring the intensities of all of the sidebands from a given spin, the spin interaction

can be reconstructed if all other spin interactions are completely decoupled. For example

the method for reconstructing the principal components of the chemical shift tensor from

spinning sidebands is widely used[49, 51]. As depicted in Figure 5.3 the static spectrum can

be reconstructed from a series several MAS experiments.

5.2 Current Abilities

Some of the most important developments in modern solid state NMR are related

to the ability to increase resolution to levels similar to that found in the liquid state.

Tremendous effort has been expended to improve decoupling abilities whether it be through

faster spinning speeds[52] or multiple pulse sequences[53]. Perhaps ironically, another area
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Figure 5.3: 13C CP-MAS spectra of labeled glycine with 1H CW decoupling at 125 MHz,
the spinning speeds are as indicated on the figure. The static spectrum is a simulation
based on the CSA tensor derived from the spinning spectra.
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of developments in modern solid state NMR is the ability to reintroduce (or recouple) the

interactions that were initially removed to provide high-resolution.

The recoupling of the dipolar interaction has received much attention in solid state

studies due to the 1
r3

dependence of the interaction. These dipolar recoupling methods often

have the drawback of producing a recoupled interaction which has an orientation dependence

and does not directly yield the desired dipole coupling. There has been much progress in this

area in the last few years [54, 55, 56, 57] and Chapter 7 introduces new methodologies that

extract only the desired isotropic value of the coupling. These methods are then applied to

study the uncertain structure of ferrocene in the solid state.

Although the CSA in solids has been well studied, it’s use for determining structure

has been somewhat limited. Although this interaction is highly correlated with the environ-

ment of the nucleus, there is no direct route to structure. There have been many advances

in the area of making links between the CSA and structure, and we present contributions

to this area in the next chapter.
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Chapter 6

Using the CSA to Determine

Structure

6.1 Introduction

Considering the available interactions in NMR, the chemical shift has perhaps the

greatest potential to reveal detailed information about the bonding environment and geom-

etry of a given nucleus. The isotropic part of the chemical shift is the most widely utilized

interaction in NMR, however, the isotropic chemical shift, δiso, has very limited informa-

tion about the three-dimensional environment that the nucleus resides in. Alternatively, the

chemical shift anisotropy (CSA) is strongly correlated with the three-dimensional electronic

environment of the nucleus.

The problem with harnessing the CSA to provide specific structural information

lies with the interpretation. Since the chemical shielding is directly related to the electronic

properties of a molecule, in principle, the shielding could be calculated for a variety of
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geometries and (overlooking any degeneracies, etc.) structure determined via comparison

with the experimental determination. However, determination of the electronic structure of

molecules and thus the shielding is not an exact calculation. Instead, the methods used in

electronic calculations rely on some approximations which might provide poor correlation

with the experiments[58, 59]. Nevertheless, rapid progress and new approaches have been

made recently in both computational methods and hardware which allows for more accurate

calculations[60, 61, 62]. In this section, modern ab initio computational methods are com-

bined with developments in experimental determinations of the CSA to provide structural

information in proteins and peptides.

6.2 Proteins and Peptides

Fortunately, proteins are a polymer composed of monomeric units (called a pep-

tide) which have limited conformational variability along the polymer main chain (called

the backbone). The majority of a protein’s conformation and 3D fold is determined by the

backbone dihedral angles φ and ψ as depicted in Figure 6.1. Peptides generally fall into

approximately one of two conformation categories α-helix or β-sheet as determined by the

dihedral angles φ and ψ. Due to the fact that the peptide dihedral (O=C-N-H) is always

nearly 180◦, the conformational space is somewhat restricted to φ, ψ variations. There also

exists an additional dihedral χ which determines the rotation about the Cα-R bond, where

R is the sidechain of the amino acid (as indicated in Figure 6.1). It is thought that by

studying the chemical shift changes of the Cα and possibly the Cβ (first carbon of the

sidechain R), structural information can be obtained.
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Figure 6.1: Diagram of φ, ψ dihedral angles in an amino acid. The two angles are central
to the Cα and are essentially determined by the rotation of the peptide planes indicated by
the dashed lines.

6.3 CSA Tensors in Proteins and Peptides

Over the past few years, there has been an increased interest in the use of the

isotropic chemical shift and the chemical shift (or shielding) tensor in investigating pep-

tide and protein structure. This work has included a number of ab initio and density

functional theory quantum chemical investigations aimed at relating chemical shifts and

shift anisotropies to structure[63, 64, 65, 66, 67, 68]. In early work, Spera and Bax[69]

reported clear differences between isotropic Cα and Cβ shifts in helical and sheet geome-

tries, and these shifts have been quite accurately predicted by using quantum chemical

methods[70]. Recent work shows experimental and theoretical shift (or shielding) tensor re-

sults, σii, for a series of alanine-containing peptides[71]. Other work also demonstrated that

peptide backbone φ,ψ angles could be derived from the experimental shift tensor results,

using a Bayesian probability method[71]. In addition, results of a theoretical study of the

Cα shielding tensors in Gly, Ala, Val, Ser, Thr and Ile containing peptide fragments were

also reported[72]. In this work, it was noted that for Cβ-substituted amino-acids (valine,
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isoleucine, serine and threonine) not only was the ∼4-5 ppm increase in isotropic shielding

of sheet conformations over helical ones observed, but in addition there was in general a

large increase in overall tensor span (Ω = σ33-σ11), and a change in tensor orientation, for

sheet versus helical residues[72]. More recently, this difference in tensor span has been used

in the identification of protein secondary structure in the solid-state using a CSA-based

spectral editing technique[73].

In solution NMR, CSA information can be gleaned from cross-correlated relaxation

measurements [74], Tjandra and Bax [75] also obtained quantitative experimental informa-

tion on the 13Cα CSA which correlated with backbone structure: on average in α-helices,

σorth-σpar = 6.1 ± 4.9 ppm whereas in β-sheets, σorth-σpar = 27.1 ± 4.3 ppm, where σpar

is the shielding in the direction parallel to the C-H bond and σorth is the average shielding

orthogonal to this bond. This effect was first predicted theoretically by Walling et al.[76],

who investigated “idealized” helical (φ = -60◦, ψ = -60◦) and sheet (φ = -120◦, ψ = 120◦)

geometries for 18 amino-acids, then Sitkoff and Case[66] made a direct comparison of the

13Cα CSA values for ubiquitin and calmodulin/M13 using an alanine fragment[66].

There are, however, a number of apparently striking observations. First of all,

Sitkoff and Case[66] were able to reproduce reasonably well the entire set of reported ubiq-

uitin and calmodulin CSA values (∆σ* = σorth-σpar) just by using alanine as a model for

all amino-acids, but alanine is known to have about the same CSA, Ω, in both helical and

sheet geometries[72]. This suggests that the “CSAs” measured in solution are overwhelm-

ingly dominated by a change in shift tensor orientation, as first suggested by Walling et

al.[76] not by any change in the span (Ω) seen in solid-state NMR, or from Ω = σ33-σ11

= ∆σ values obtained from calculation. Second, in recent calculations on phenylalanine,
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tyrosine, leucine, cysteine and lysine[77], it was reported that Cα spans are essentially the

same in both helical and sheet residues: only Cα of threonine, valine and isoleucine appear

to show large differences in CSA (Ω) between helical (Ω ∼ 20 ppm) and sheet (Ω ∼34 ppm)

geometries[72, 77]. In previous work, serine was included as a member of a substituted

amino-acid class (Val, Ile, Thr and Ser)[72], but the results of more recent work suggest

that a more (NMR) appropriate classification of the amino-acids is: β-branched (two sub-

stitution on Cβ, i.e. Val, Thr and Ile) and non-branched (the remaining amino-acids). If

correct, this would have important implications for spectral editing experiments based on

Ω, or structural conclusions which might be drawn from Ω.

In this section a route to structure via the chemical shift tensor is presented by

carrying out experimental and theoretical investigations of the 13Cα shielding tensors in two

non-branched amino-acids, alanine and leucine, in a series of crystalline peptides. This is in

addition to investigating Cα shielding in valine in small peptides, to validate the results of

the quantum chemical calculations on small molecules. Additional theoretical investigations

of the 13Cα ∆σ* = σorth - σpar values of these and other peptides were performed for the

solid state. The results for leucine are particularly interesting since they show that both

helical and sheet fragments have the same CSA (Ω), because leucine is an unbranched

amino-acid, but due to tensor rotations, ∆σ*=σorth - σpar for solid leucine residues range

from ∼10 to 30 ppm, just as found in solution NMR investigations.

6.3.1 Experimental Section

Synthetic Aspects. Four peptides were synthesized: LL*VY-OMe[78], L*LVY-

OMe, Boc-V*AL-Aib-*VAL-OMe, and Boc-VA*L-Aib-VAL-OMe. An “*” placed before an
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amino acid letter indicates that it is 13Cα?labeled. The “Aib” in the Boc peptides indicates

an α-aminoisobutyric acid residue. Using different crystallization solvents (methanol / water

[79] or DMSO / isopropanol [80]), the Boc-VAL-Aib-VAL-OMe peptides were crystallized

in two different conformations.

NMR Spectroscopy. 13C NMR spectra of both Boc-V*AL-Aib-*VAL-OMe con-

formers and the Boc-VA*L-Aib-VAL-OMe/MeOH-water peptides were obtained at 7.07

Tesla (corresponding to a 13C Larmor frequency of 75.74 MHz) on a home-built spectrome-

ter based on a Tecmag (Houston, Texas) pulse programmer. A Chemagnetics (Fort Collins,

CO) 4-mm MAS probe was used for these experiments. Spinning speeds were controlled to

±1 Hz using a home-built spinning-speed controller. The CP contact time was 2.5 ms, the

1H decoupling field strength was 108 kHz, and the recycle delay was 1.5 seconds. Spectra

of the Boc-VA*L-Aib-VAL-OMe/DMSO-isopropanol peptide, as well as both LLVY-OMe

peptide 13C NMR spectra, were obtained at 11.72 Tesla (corresponding to a 13C Larmor

frequency of 125.75 MHz) using a Varian/Chemagnetics (Fort Collins, CO) Infinity spec-

trometer with a 4mm MAS probe. Spinning speeds were controlled to within ±3 Hz using

a Chemagnetics spinning-speed controller. The CP contact time was 2.0 ms, the 1H decou-

pling field strength was 104 kHz, and the recycle delay was 2 seconds. The experimental

spectra were taken at a range of sample-spinning speeds and fitted by using the Herzfeld-

Berger method[49]. An average of the CSA values derived from each spinning speed was

used to compare with the theoretically calculated values. Isotropic shift values were mea-

sured relative to the carbonyl carbon of glycine in a reference sample, taken as 176.04 ppm

downfield from tetramethylsilane (TMS; IUPAC δ-scale).

Computational Aspects Cα shieldings for alanine, valine and leucine were evaluated
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Figure 6.2: Leucine fragment used in the ab initio calculations of the chemical shielding
tensor. The bold atoms used the basis 6-311G(2d,2p) while the remainder used 6-31G.

by using Hartree-Fock theory and the gauge-including atomic orbitals[81] (GIAO) approach.

Full Ramachandran chemical shielding surfaces were calculated for leucine in the three most

probable conformers found in rotamer libraries:[82, 83] χ1 = -60◦, χ2 = 180◦ (mt, 59% of

rotamer library); χ1 = 180◦, χ2 = 60◦ (tp, 29%); and χ1 = 180◦, χ2 = 180◦ (tt, 2%). Here

t = trans, p = +60◦ and m = -60◦ torsion angles, following Lovell et al.[83] and for valine

in the three most probable χ1 conformers: χ1 = 180 (t, 73% of rotamer library); χ1 = -60

(m, 20%); and χ1 = +60 (p, 6%). The methods used to compute these shielding surfaces

have been described previously[72]. Calculations used a series of N -formyl-L-amino acid

amide fragments, which are energy minimized by using an AMBER[84, 85] forcefield in

the Discover module imbedded in Insight II (Molecular Simulations, Inc., San Diego, CA).

The energy minimized structures were then used as input structures for evaluation of the

chemical shielding surfaces using Gaussian-98[86]. A locally dense basis set approach[87]

was employed using a 6-311++G(2d,2p)/6-31G scheme, with the larger basis placed on Cα

and its neighboring atoms, as depicted in the following diagram for the leucine fragment:

These shielding surfaces along with the previously reported alanine surfaces[72] can be found

at http://waugh.cchem.berkeley.edu/˜bob.

http://waugh.cchem.berkeley.edu/~bob
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res. compound δ11 δ22 δ33 δ11−33

Ala 1 Boc-V*AL-Aib-VAL-OMea 73.8 52.0 32.5 41.3
2 Boc-V*AL-Aib-VAL-OMeb 73.0 51.3 32.6 40.4
3 G*AVc 76.9 55.4 25.5 51.4
4 A*AAc 70.2 54.9 23.6 46.6
5 A*AA hemihydratec 71.0 55.8 24.0 47.0

Val 6 Boc-VAL-Aib-*VAL-OMea 79.1 62.8 38.2 40.9
7 Boc-VAL-Aib-*VAL-OMeb 78.7 61.8 38.0 40.7
8 LL*VY-OMe 79.3 57.1 39.8 39.5

Leu 9 Boc-VA*L-Aib-VAL-OMea 71.4 54.8 40.2 31.2
10 Boc-VA*L-Aib-VAL-OMeb 71.5 57.7 36.1 35.4
11 L*LVY-OMe 71.6 50.9 31.3 40.3

Table 6.1: Experimentally Measured 13Cα Chemical Shift Tensor Information for Ala-, Val-,
and Leu-containing Peptides. aCrystallized from MeOH-H2O. bCrystallized from DMSO-2-
propanol. cExperimental values from Ref.[71]

In order to obtain the tensor orientations necessary for conversion of solid state δii

to solution ∆σ∗exp values, individual calculations were performed for the eleven labeled sites

in the polypeptides of interest, shown in Table 6.1. These calculations utilized the energy

minimized amino acid model compound with the φ,ψ torsion angles set to corresponding

crystallographic values, while the χ1/χ2 torsion angles were set to the nearest staggered

energy minimum value (±60◦, 180◦).

Calculations were performed on Silicon Graphics Origin 200 (Mountain View, CA)

computers and on the Silicon Graphics Origin 2000 and HP-Convex Exemplar SP-2000

(Hewlett Packard Company, Palo Alto, CA) computers located in the National Center for

Supercomputing Applications (NCSA) in Urbana, IL.

6.3.2 Results and Discussion

We first investigated the 13Cα shift tensor elements in the following peptides

(Table 6.2): Boc-V*AL-Aib-*VAL-OMe (MeOH/water) (1,6), Boc-V*AL-Aib-*VAL-OMe
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Figure 6.3: 13C CP-MAS NMR results for 13C-labeled Boc-VA*L-Aib- VAL-OMe. (A),
Computer simulation of experimental spectrum, (B). The MAS spinning rate was 935 Hz,
and the spectrum in (B) was referenced to 13Co in glycine taken to be at 176.04 ppm
downfield from TMS. (C) Difference between (A) and (B).
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Figure 6.4: Computed shielding surfaces for 13Cα in N-formyl leucine amide (χ1 =
−60◦, χ2 = 180◦, mt, 59% of the protein database), computed by using a Hartree-Fock
method with gauge-including atomic orbitals and a locally dense basis set: (A) σ11; (B)
σ22; (C) σ33; and (D) σ33 − σ11.

(DMSO/isopropanol) (2,7), G*AV (3), A*AA (4) A*AA-hemihydrate (5), LL*VY-OMe

(8), Boc-VA*L-Aib-VAL-OMe (MeOH/water) (9), Boc-VA*L-Aib-VAL-OMe (DMSO/iso-

propanol) (10) and L*LVY-OMe (11), where the asterisk preceding a letter indicates the

presence of a 13Cα-labeled residue. We used magic-angle sample-spinning NMR to ob-

tain spectra at a series of spinning speeds, then used the Herzfeld-Berger[49] method to

deduce the principal elements of the 13Cα shift tensor: δ11, δ22 and δ33. A spectrum of

Boc-VA*L-Aib-VAL-OMe (9) obtained with high-power proton-decoupling is shown in Fig-

ure 6.3B, together with its computer simulation (Figure 6.3A) and the difference spectrum,

Figure 6.3C. The experimentally determined shift tensor elements for the eight 13Cα labeled

sites in the new compounds together with results for the three alanine-containing peptides

reported previously,[71] are shown in Table 6.2.
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In order to evaluate the theoretical shieldings, we used the alanine shielding sur-

faces reported previously[72], together with the new leucine and valine surfaces. The indi-

vidual shielding tensor surfaces σii(φ,ψ) and the shielding tensor span surface Ω(φ,ψ) for

the three most probable conformations of leucine are shown in Figures 6.4-6.7. In Table 6.2,

we show the crystallographic φ, ψ and χ values and computed shielding tensor values for

the 11 Cα labeled sites. For alanine, we predicted 15 shielding tensor elements from the

experimental φ,ψ results for 1-5 and these are shown in Table 6.2 and Figure 6.5A. From

Figure 6.5A, we deduce the following relationship between the theoretical shielding tensor

elements (σii) and the experimental shift tensor elements (δii):

σAii = −0.72δAii + 184.6 (R2 = 0.97) (6.1)

where is the theoretical shielding tensor element for 13Cα in an alanine peptide (in ppm

from the bare nucleus) and δAii is the experimental chemical shift tensor element (in ppm

from tetramethylsilane, TMS). Two shielding surfaces, with χ1 = -60◦ and χ1 = 180◦, were

then used to evaluate the nine valine 13Cα shielding tensor elements shown in Tables 6.1

and 6.2 and these results are plotted in Figure 6.5B. From this we deduce the relation:

σVii = −1.03δVii + 200.8 (R2 = 0.99) (6.2)

Clearly, in both alanine and valine, the R2 values are excellent, with the rms deviations

from the fitted line being on average ∼2.0 ppm, indicating that the theoretical predictions

correlate well with those determined experimentally. For leucine, we computed the three
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Figure 6.5: Graph showing theoretical 13Cα chemical-shielding tensor elements for alanine
(A), valine (B), and leucine (C) peptides plotted versus the experimentally determined
chemical-shift tensors. For (A): slope = -0.72, y-intercept = 184.6ppm, R2 = 0.97, and
rmsd = 2.4 ppm (B): slope = -1.03, y-intercept = 200.8 ppm, R2 = 0.98, and rmsd = 2.5
ppm. For (C): slope = -0.84, y-intercept = 189.9 ppm, R2 = 0.99, and rmsd = 1.5 ppm.
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Figure 6.6: Computed shielding surfaces for 13Cα in N-formyl leucine amide (χ1 =
180◦, χ2 = 60◦, tp, 29% of the protein database), computed by using a Hartree-Fock method
with gauge-including atomic orbitals and a locally dense basis set: (A) σ11; (B) σ22; (C)
σ33; and (D) σ33 − σ11.

Figure 6.7: Computed shielding surfaces for 13Cα in N-formyl leucine amide (χ1 =
180◦, χ2 = 180◦, tt, 2% of the protein database), computed by using a Hartree-Fock method
with gauge-including atomic orbitals and a locally dense basis set: (A) σ11; (B) σ22; (C)
σ33; and (D) σ33 − σ11.
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major shielding surfaces[83][84]: χ1 = -60◦, χ2 = 180◦ (mt, 59% of the protein data base);

χ1 = 180◦, χ2 = 60◦ (tp, 29% of the data base) and χ1 = 180◦, χ2 = 180◦ (tt, 2% of the

protein data base). Unlike the situation found with the two valine-containing peptides, the

x-ray crystallographic results for leucine showed leucine sidechain disorder in two out of

three three peptides investigated, and we did not obtain crystals suitable for a re-analysis

of this question. Fortunately, however, the shielding surfaces for the major conformations,

Figures 6.4-6.7, are rather similar and we find good correlations between all nine experimen-

tal shifts and their corresponding computed shielding tensor elements when using either the

most probable mt or tp surfaces. That is, the 13Cα shielding tensor is primarily sensitive

to φ,ψ changes, not to differences in χ1 and χ2. In 9, only the tp conformers are present (2

molecules per unit cell) but in 10 there are four conformers (including the most populated

mt and tp species) and in 11 there are two. Fortunately, however, as noted above and as

shown in Figures 6.4-6.7, the 13Cα shielding tensors are relatively insensitive to χ1/χ2 for

this amino-acid (unlike the situation with e.g. isoleucine), and use of either of the most

populated (mt, tp) surfaces produces very similar 13Cα shielding tensor results. For exam-

ple, using the mt (χ1 = -60◦, χ2 = 180◦) surface we obtain a slope = -0.87, an intercept =

191.5 ppm and an R2 value = 0.97, and a rmsd from the fitted line of 2.4 ppm. For the tp

surface (χ1 = 180◦, χ2 = 60◦) we obtain a slope = -0.82, an intercept = 188.9 ppm, an R2

value = 0.98 and an rmsd = 1.7 ppm.

However, it is of course most appropriate to try to use the actual or most probable con-

formers. For 9, we used the tp surface to generate the theoretical shielding results shown

in Table 6.2, since there is only a single conformer in the crystal. For 11, there are two

conformers present, however, one of these appeared to have a bad steric contact with the
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tyrosine ring in the peptide and on molecular mechanics geometry optimization adopted

the mt conformation, which was used to generate the shielding results given in Table 6.2.

Similarly, 10 was also subjected to molecular mechanics optimization and yielded mt as the

preferred conformation, again resulting in the shielding results shown in Table 6.2. A graph

of the experimental shift versus theoretical shielding tensor elements is shown in Figure 6.5C

and can be fitted by:

σLii = −0.84δLii + 189.8 (R2 = 0.99) (6.3)

with an rms error of 1.5 ppm.

When considering all 33 shift tensor element results, we conclude that the quantum

chemical shielding calculations generate good correlations between the experimental shift

and theoretical shielding tensor values. However, while the R2 values are in all cases very

good (R2 values of ∼0.99, on average), there are clearly small systematic errors in the

slopes, which range from –0.72 to –1.03 (versus the ideal value of –1.00). This effect has

been discussed previously[64] and we have proposed that since the R2 values are so good,

it is appropriate to simply use regression curve slopes and intercepts to scale the quantum

chemical results in order to arrive at accurate predicted shift values.

Using the appropriate scalings from the regression curves (Equations 6.1 -6.3),

we obtained the experimental shift versus theoretical shift tensor element results shown in

Figure 6.8, where there is clearly very good agreement for all 33 13Cα shift tensor elements

in alanine, valine and leucine fragments. Also of interest from these results, and those

shown in Table 6.2, is the observation that while the expected isotropic shift/shielding

difference between helical and sheet residues is seen in each case, i.e. the sheets are ∼3-4
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Figure 6.8: Theory versus experiment comparison of chemical shift tensor elements for Ala,
Val and Leu peptides. The theoretical chemical shifts are corrected by use of Equations 6.1-
6.3. Slope = 1.00, y-intercept = -0.12 ppm, R2 = 0.99, and rmsd = 2.7 ppm.

ppm more shielded than are helical 13Cα residues, there is no evidence for any “narrow”

helical 13Cα CSAs or Ωs. The reasons for the lack of large helix-sheet CSA differences are as

follows. First, in the case of alanine, we have already demonstrated both experimentally and

theoretically that there are no major helix/sheet tensor anisotropy differences seen[71, 72].

Second, in the case of the three valine residues investigated, 6 is a χ1 = -60◦ distorted helix

(φ = -87◦, ψ = -11◦, molecule 1; φ = -91◦, ψ = 2◦, molecule 2). The average Ω for these

two species (from the shielding surfaces) is 38.8 ppm. The second valine species, 7, is a χ1

= -60◦ distorted sheet (φ = -109◦, ψ = 17◦). The Ω for 7 from the shielding surfaces is 47.3

ppm. The final valine species, 8, is a χ1 = 180◦ sheet (φ = -124◦, ψ = 120◦). The Ω for 8

from the shielding surfaces is 39.6 ppm, in general accord with the 37.4 previously reported

for the φ = -120◦, ψ = 120◦ χ1 = 180◦ sheet[72]. In the case of the three leucine species,

9-11: 9 and 10 have helical φ,ψ values while 11 has sheet values (Table 6.2). However, as

demonstrated by both experiment (Table 6.1) and theory (Table 6.2) there are in fact no
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major differences in Ω between helical and sheet geometries. In sharp contrast, helical and

sheet leucine ∆σ*s determined via solution NMR do vary widely with conformation. The

reason for these differences must therefore reside in the definition of the “CSA”.

According to Jameson[88], Ω is the difference between the most shielded (σ33)

and the least shielded tensor component (σ11), corresponding to the width of the resonance

powder pattern in ppm, Ω=(σ33-σ11), where σ33 ≥ σ22 ≥ σ11 and σ is the chemical shielding,

and Ω=(δ11-δ33), where δ is the chemical shift.

Previously, Ω was to describe shielding tensor differences between helices and

sheets, which is used in CSA-based dephasing experiments[73], where the dephasing ob-

served is a function of Ω. Relaxation based measurement of the CSA in solution NMR is,

however, sensitive to different components of the CSA. Here, a CSA or ∆σ* has been defined

as ∆σ* = σorth-σpar, where σpar is the shielding parallel to the Cα-Hα bond vector and

σorth is the average shielding orthogonal to the Cα-Hα bond vector. However, if we know

the angles between σii and the Cα-Hα bond vector, the shielding tensor can be projected

onto this axis by using the following rotation:

σpar =
[
d1 d2 d3

]

σ11 0 0

0 σ22 0

0 0 σ33




d1

d2

d3

 (6.4)

where σii are the shielding tensor elements in the principal axis system and di are the

direction cosines of the Cα-Hα bond with respect to the principal axes. When combined
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with Eq. (6.5)[75]:

∆σ∗ = σorth − σpar = 1.5 ∗ (σiso − σpar) (6.5)

∆σ* can therefore in principle be calculated from σ11, σ22, σ33 and the direction cosines.

Unfortunately, in simple solid state MAS NMR experiments, only the magnitudes of the shift

tensor elements are obtained in the PAS and not the molecular frame, so the solid state NMR

Ω information cannot immediately be transformed to the solution NMR ∆σ∗exp by means

of Equations 6.4 and 6.5. However, it seems reasonable to utilize the tensor orientations

(d1, d2, d3) we obtain from ab initio calculations to effect this transformation, since in

previous work there has been excellent agreement between single crystal shielding tensor

results and theoretical shielding tensor results in the amino-acid threonine[89]. Therefore,

using Eq. (6.6), ∆σ*exp for the eleven labeled sites can be computed from the solid-state

NMR δii
exp results as:

∆σ∗par = −1.5×

δ
exp
iso −

[
d1 d2 d3

]

δexp11 0 0

0 δexp22 0

0 0 δexp33




d1

d2

d3



 (6.6)

Clearly, from Eq. (6.6) above, the orientation of the principal axis can significantly affect the

values of ∆σ*. As may be seen in Figure 6.9, the computed Cα shielding tensor orientations

in leucine do vary dramatically with φ,ψ, and consequently the shieldings along the Cα-Hα

bond axis also vary considerably. This of course explains why ab initio quantum chemical

calculations of protein solution NMR ∆σ* = σorth-σpar values using an alanine model are in
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generally good agreement with experiment[66], even though the ∆σ ≈ Ω = σ33-σ11 values

are relatively insensitive to φ,ψ, both experimentally[71] and theoretically[71, 72]. That

is, the alanine tensor orientation changes overwhelmingly dominate the helical/sheet ∆σ*

changes, because alanine is not a β-branched amino-acid and is therefore a good model for

the great majority of amino-acids.

To demonstrate this effect more clearly, shown in Figure 6.10 is the ∆σ*exp

(Eq. (6.6) and purely theoretical ∆σ* values (Table 6.2) for the eleven labeled sites inves-

tigated, together with solution NMR results for Ala, Val and Leu in the protein ubiquitin.

The solid state ∆σ*exp values were obtained by combining the experimental δii with the

theoretical direction cosines, as shown in Eq. (6.6). The ubiquitin solution ∆σ*exp values

are those reported by Tjandra and Bax[75]. The ∆σ* (theoretical) values were read from

the theoretical ∆σ* surfaces. When cast in terms of solution ∆σ* values, the solid-state

results are clearly indistinguishable from the solution NMR results. Thus, although ∆σ =

Ω for leucine is essentially independent of whether 13Cα is in a helical or sheet conforma-

tion (Ω ∼37 ppm on average from experiment, ∼30 ppm from calculation), ∆σ* (solution)

varies from ∼5 to 38 ppm (from Ref. 12), as does the solid-state derived ∆σ* (∼10-30

ppm, Table 6.2). These results have important implications for investigations of Ω in other

amino-acids in peptides or proteins, in particular for their use in spectral editing or in deriv-

ing structural information. For example, in recent solid-state NMR studies of ubiquitin,[73]

it has been shown that there are large differences in signal dephasing which depend on Ω,

with β-sheet 13Cα signals decaying first. In one spectral region, Gln-40, Glu-41 and Phe-4

all decayed rapidly, consistent with a large Ω (all are non β-branched residues). Similarly,

in another spectral region, Val-70 (sheet, χ1 = 180◦) and Ile-13 (sheet, χ1 = 126◦) also
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Figure 6.9: 13C shielding tensor orientations for fragments investigated. (A) Ideal leucine
helix geometry (φ= -60, ψ= -60); ∆σ= 28.1 ppm, ∆σ∗= 1.34 ppm; (B) Ideal sheet geometry
(φ= -120, ψ= 120); ∆σ= 34.8 ppm, ∆σ∗= 26.8 ppm; (C) Compound 10 (φ= -62, ψ= -29);
∆σ= 32.0 ppm, ∆σ∗= 7.8 ppm; (D) Compound 11 (φ= -129, ψ= 124); ∆σ= 30.8 ppm,
∆σ∗= 26.0 ppm; (E) Ubiquitin Leu56 (φ= -61, ψ=-36); ∆σ= 32.0 ppm, ∆σ∗= 6.5 ppm
and (F) Ubiquitin Leu 69 (φ= -107, ψ= 116); ∆σ= 34.1 ppm, ∆σ∗= 25.7 ppm.
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Figure 6.10: Theory versus experiment comparison of the Cα solution CSA (∆σ* = σorth-
σpar) for Ala, Val, Leu in ubiquitin and 9 peptides. Slope = 0.87, y-intercept = 1.8 ppm,
R2 = 0.90, and rmsd = 3.4 ppm. The outlier is in ubiquitin.

decayed rapidly (sheet Ωs, even for β-branched amino-acids, are large), while Ile-23 (helix),

Val-26 (helix) and Ile-30 (helix) all remained prominent, consistent with small Ωs. The

helical residues Lys-33, Glu-34 and Tyr-59 were apparently exceptions, however, this may

be attributable to the fact that all three amino-acids have similarly large helix, sheet tensor

spans, since they are not β-branched[77].

6.3.3 Conclusions

The results presented above are of interest for a number of reasons. Not only have

we obtained experimental 13Cα shielding tensor results for unbranched (alanine, leucine) and

β-branched (valine) amino-acids in peptides using magic-angle sample spinning techniques,

but we find good correlations between these experimental shielding results and those com-

puted theoretically. Our results with the unbranched amino-acids alanine and leucine show

very similar 13Cα tensor magnitudes for helical and sheet conformations, but with different
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tensor orientations. This is to be compared with previous results with valine, isoleucine and

threonine, in which small 13Cα tensor spans (Ω) were predicted for helical (but not sheet)

residues, for the most popular conformations. The lack of large variations in Ω for non-β

branched amino-acids may be a general one and has implications for structural studies or

solid-state spectral editing experiments based on Ω. Finally, we were able to clarify dif-

ferences between the solution state derived ∆σ* and the solid state definition of the CSA.

Our results show that there is good agreement between experimental and theoretical ∆σ*

values for alanine, valine and leucine residues in ubiquitin (solution NMR) and in a series of

peptides (solid-state MAS NMR σii determination, ab initio tensor orientation). The broad

range of ∆σ* but essentially constant Ω values are well reproduced in the calculations. The

range in ∆σ* in solution NMR experiments is overwhelmingly dominated by changes in the

13Cα tensor orientation with φ,ψ. An exciting prospect of the sensitivity of the CSA tensor

and its orientation to φ and χ is that this may allow the CSA to be used as an effective

structural refinement tool. Advances in cross-correlated relaxation measurement in solution

have shown that both the shift tensor and its orientation can be determined in proteins[90]

and further work utilizing the results presented here is currently underway.
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Chapter 7

Dipolar Coupling Measurements in

the Solid State

7.1 Introduction

As mentioned in previous chapters, many interactions, such as the dipole-dipole

interaction, depend upon the orientation of the Zeeman field with respect to the Principal

Axis System (PAS) of the particular interaction. The resulting ”secular” contributions from

these interactions are typically anisotropic which leads to broad spectra when dealing with

powdered samples. In the past, there have been numerous attempts to make anisotropic in-

teractions isotropic without removing the interaction. These methods can be put into three

different directions of approach. The first approach was introduced by Bloom in the early

80’s and involved a mathematical transformation of the NMR powder spectrum, a method

referred to as ”de-Pake-ing”[91]. These transforms suffered from noise contamination which

sometimes gave unreliable results. The second method was introduced by the Pines’ group
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and involved actually having the system evolve in zero-field[92, 21]. The spin system was

prepolarized in a high-field magnet and then mechanically shuttled outside of the magnet

to evolve under the zero-field Hamiltonian. The same was then shuttled back into high-

field for detection. This method has been demonstrated in a variety of experiments, and it

has been shown to be successful in a variety of applications. However, it is experimentally

quite demanding, and zero-field manipulations of spin interactions tend to be more complex

than their high-field counterparts. Finally, the third class of experiments have dealt with

trying to remove the anisotropy using mechanical rotation and radiofrequency (RF) pulses

while still staying in high-field. Tycko showed in a series of papers how an average Hamil-

tonian proportional to the zero-field Hamiltonian could be constructed in high-field for a

dipole-coupled spin system via a suitable choice of rotor synchronized RF pulses[93, 94, 95].

In this chapter,an alternative to Tycko’s zero-field in high-field methodology is presented

which produces an isotropic dipolar spectrum for a pair of dipole coupled spins while in

high-field. This method, called HOMonuclear Isotropic Evolution (HOMIE) works by re-

moving the anisotropic component of the dipolar frequencies by a suitable combination of

average Hamiltonians and evolution pathways. In the following chapter, Tycko’s Zero-Field

in High-Field methodology is first briefly reviewed. Next, the theory and implementation of

HOMIE is presented which provides isotropic dipolar spectra for a homonuclear spin pair.

Then, an extension of the method to obtain isotropic local field spectra for an INS spin

system is presented.
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7.2 Tycko’s Zero-Field in High-Field

As was shown in an earlier chapter, the zero-field Hamiltonian for a dipole coupled

spin pair is given by In zero magnetic field, the dipolar Hamiltonian for a pair of spins is

given by

HZF
D = −ωD(~I1 · ~I2 − 3(~I1 · r̂12)(~I2 · r̂12)) (7.1)

= ωD

2∑
m=−2

(−1)mA12
2,m(θ12, φ12)T 12

2,−m

where r̂12 is the internuclear unit vector between spins 1 and 2, ωD = γ1γ2
|r12|3 is the dipole

coupling, A12
2,m(θ12, φ12) and T 12

2,m are second rank spatial and spin tensors respectively, and

(θ12, φ12) are polar angles relating the magnetic field quantization axis to the internuclear

vector. As can be shown by using the rotation operators (described in more detail in [96]),

HZF is a scalar , i.e., it is invariant to rotations to the combined rotation of space and spin.

This can be seen as follows: HZF transforms under the rotation R = RSpaceRSpin as follows:

R†HZFR =
2∑

n=−2

R†
Space(−1)nA2,nRSpaceR

†
SpinT2,−nRSpin

=
2∑

n=−2

2∑
m=−2

2∑
p=−2

(−1)nA2,pT2,mRp,nRm,−n

=
2∑

m=−2

2∑
p=−2

(−1)pδm,−pA2,pT2,m

=
2∑

m=−2

(−1)mA2,mT2,−m (7.2)

For two spin 1/2 particles, the eigenvalues of HZF
D are independent of θ12 and φ12, which

even for a powdered sample, result in three sharp lines, as shown in Figure 7.1A.
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Under high-field conditions (γB � ωD) the Hamiltonian is truncated by the Zee-

man interaction which is typically the case for NMR experiments. However, the Zeeman

interaction, HZeeman = γ ~B0 · ~I, destroys the isotropy of spin and space. In high magnetic

fields where |γB0| � |ωD|, the dipolar interaction is treated as a perturbation to the Zee-

man interaction, causing HZF
D in Eq. (7.2) to be effectively truncated along the Zeeman

field. Taking the Zeeman field, ~B0 to be along the z axis, the “secular” part of the dipolar

Hamiltonian, HHF
D , is given by

HHF
D = ωDA

12
2,0(θL, φL)T 12

2,0 = ωD
3 cos(θL)2 − 1

2
(3I1

ZI
2
Z − ~I1 · ~I2) (7.3)

where θL is the angle that the internuclear vector makes with respect to the Zeeman field.

For two spin 1/2 nuclei, the resulting spectra under HHF gives a ”Pake” pattern for a

powdered sample as shown in Figure 7.1B.

The high-field Hamiltonian does contain a component of the zero-field Hamilto-

nian. IfHHF is represented by the vector 〈HHF| = (0, 0, 1, 0, 0) and 〈HZF| = (1,−1, 1,−1, 1),

where 〈A2,2T2,−2| ≡ (1, 0, 0, 0, 0),〈A2,1T2,−1| ≡ (0, 1, 0, 0, 0), etc. Then the amount of zero-

field Hamiltonian contained in the high-field Hamiltonian is simply given by

σ =
〈HZF|HHF〉
〈HZF|HZF〉

=
1
5

(7.4)
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νd=2000Hz

-4000 -2000 0 2000 4000
Figure 7.1: Simulated spectra for a dipole coupled spin system in (A) zero-field and (B)
high-field conditions. An ωD/(2π) = 2000 Hz was used. (A) The zero-field consists of three
sharp lines at frequencies at 0 Hz and ±3000 Hz. (B) Pake pattern for a dipole coupled
spin system, where the spread in frequencies is due to the anisotropy of HHF

D in Eq. (7.3).
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Thus HHF can be written as

HHF =
1
5
HZF +

(
HRest

)
HRest = HHF − 1

5
HZF (7.5)

This means that the zero-field Hamiltonian can be obtained from the high-field Hamiltonian

with maximum scaling of σ = 1/5 if HRest could be removed from HHF. To see how this

can be accomplished, it is useful to rewrite HHF in the coupled ”basis” of space and spin,

following the original derivation given by Tycko. HHF can be written in the coupled basis

of spin-space as

HHF = ωDA2,0T2,0

= ωD
∑
l=0,2,4

C(l, 0, 2, 0, 2, 0)Fl,0 (7.6)

where C(l, 0, 2, 0, 2, 0) are the Clebsch-Gordan coefficients relating the spin and space Hamil-

tonian to the spin-space Hamiltonian. By the addition of angular momentum, the only

possible total angular momentum values are l = |2 + 2| = 4, 3, 2, 1, |2 − 2| = 0. However,

due to the fact HHF is even under parity (I → −I and θ12 → π − θ12, φ12 → π + φ12), all

odd l terms are zero (i.e., the corresponding Clebsch-Gordan coefficients are zero).

ThusHHF can be written as the sum of zeroth, second, and fourth rank terms. The

zeroth order term is proportional to HZF by the normalization factor of 1/
√

5. As expected,

C(0, 0, 2, 0, 2, 0) = 1/
√

5, which again gives the total amount of zero-field Hamiltonian in

HHF as 1/5, consistent with Eq. (7.4). The second and fourth rank terms can be removed
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by a combination of rotor synchronized pulses as was numerically discovered by Tycko[95].

Under the constraint of mechanically spinning the sample about only one rotor axis, Tycko

found a solution that gave a corresponding scaling factor of σTycko = 0.089. However,

this scaling is less than the theoretical maximum of σ = 1/5. It was later realized by

Tycko and Sun and Pines that the maximum scaling could be obtained by forcing the spins

to evolve under ”Dynamic-Angle Spinning” (DAS) like trajectories or ”Double-Rotation”

(DOR) like trajectories. Such techniques were used previously[97] to remove the anisotropic

second and fourth rank components of the second order quadrupolar interaction, while

keeping the chemical shift and isotropic second order quadrupolar interaction. However,

actual implementations of such trajectories to create the zero-field Hamiltonian are not

experimentally feasible for a variety of reasons. First of all, unless the RF powers are

exceedingly large, the scaling factor will always be less than 1/5. . Second of all, the

DOR technique suffers from instability of the sample rotation since the sample has to

simultaneously rotate about two axes at once, thus requiring very slow spinning speeds in

order to work stably. A DAS solution, however, suffers from the necessity to hop back and

forth between angles repeatedly in order for the average Hamiltonian treatment to be valid.

To see this, assume that for two separate angles, θ1 and θ2, one creates H(θ1) for a time t1

and H(θ2) for a time t2 respectively such that an average Hamiltonian

H =
1

(t1 + t2)
(t1H(θ1) + t2H(θ2)) +O[ωD(t1 + t2)]

= σHZF
D +O[ωD(t1 + t2)] (7.7)

is created. The validity of the average Hamiltonian treatment requires that the cycle time,
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tc = t1 + t2 be small enough such that |ωDtc| � 1. Due to the fact that switching sample

rotation between the angles θ1 and θ2 takes on the order of tens of milliseconds, the sample

cannot be repeatedly switched between the two angles during the course of the experiment.

For typical dipolar couplings, in order to maintain the condition |ωDtc| � 1 many angle

switching periods would be required for the average Hamiltonian treatment, which is unre-

alistic experimentally. Hence there appears to be no clear way to implement experimentally

a DAS-like trajectory in order to obtain the zero-field Hamiltonian.

Therefore, we develop the HOMonuclear Isotropic Evolution (HOMIE) method

which works by removing the anisotropic component of the dipolar frequencies by a suitable

combination of average Hamiltonians and evolution pathways described below.

7.3 Isotropic Homonuclear Recoupling (HOMIE)

The general method for obtaining isotropic dipolar spectra is shown in Figure

7.2. Consider a pair of homonuclear dipole coupled spins with the initial density matrix,

ρ(0) = IZ = I1
Z + I2

Z , evolving under the Hamiltonian, H, which is given by

H = ωDh(θ)
(
3I1
XI

2
X − ~I1 · ~I2

)
(7.8)

where h(θ) = k 3 cos2(θ)−1
2 , and k is the scaling factor associated with the particular RF pulse

sequence used to generate H from HHF
D . After evolution under H for a time t, ρ(t) is given



7.3. ISOTROPIC HOMONUCLEAR RECOUPLING (HOMIE) 117

2

1

0

-1

-2

2

1

0

-1

-2

2

1

0

-1

-2

Udet(td)ρo(τ)
or
ρ2(τ)

Udet(td)

Z

S 1
or
S 2

ρ2(τ+td)

ρ(0)

P o

P 2

Udip(t)

Uevo(τ) ρo(τ)

ρ2(τ)

DQ

DQ

S 1
evo

S 2
evo

a)

b)
Hdet(td) Hdet(td)

Hdip(t)

Hevo(t)

ρ2(τ+2td)

Figure 7.2: The Basic procedure in order to obtain isotropic dipolar spectra. An initial
density matrix, ρ(0) = IZ evolves under H [Eq. (7.8)] to give a z-magnetization (Z) term,
(ρ0), and double-quantum (DQ) term, (ρ2). Both of these terms then evolve under HEVO

[Eq. (7.10)] and only the Z components are kept. Next, evolution occurs from Z0 and
Z2 under HDET

1 into DQ coherence. The DQ coherences are then converted back into
z-magnetization for detection, using either HDET

1 for the pathway originating from ρ0 or
HDET
−1 for the pathway originating from ρ2.



7.3. ISOTROPIC HOMONUCLEAR RECOUPLING (HOMIE) 118

by:

ρ(t) = cos
(

3
2
ωDh(θ)t

)
IZ + i sin

(
3
2
ωDh(θ)t

)
(T2,2 − T2,−2)

= ρ0(t) + ρ2(t) (7.9)

where T2,±2 = I1
±I

2
±, ρ0(t) = cos

(
3
2ωDh(θ)t

)
IZ , and ρ2(t) = i sin

(
3
2ωDh(θ)t

)
(T2,2 − T2,−2).

The signal originating from either ρ0 or ρ2 can be distinguished by phase cycling, so in the

following the evolution along each pathway will be considered separately.

Consider next the average Hamiltonian, HEVO, of the form

HEVO = ωD(gA2,−2T2,2 + gA2,2T2,−2) (7.10)

where A2,±2 = 3
4 sin(θ)2e±i2φ, and g is a scaling factor that depends on the particular

sequence used to generate HEVO from HHF
D . The eigenvalues for HEVO are ±3

4gωD sin(θ)2,

which can be used to cancel the anisotropic terms of h(θ). Evolution of ρ0(t) under HEVO

for a time τ gives

〈IZ(t, τ)〉0 = Tr(ρ0(t, τ)IZ)

= cos(
3
2
ωDh(θ)t) cos(ωDw(θ)τ) (7.11)
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where w(θ) = 3
2g sin(θ)2. Evolution of ρ2(t) under HEVO for a time τ gives

〈IZ(t, τ)〉2 = Tr(ρ2(t, τ)IZ)

= − cos(2φ) sin(
3
2
ωDh(θ)t) sin(ωDw(θ)τ) (7.12)

The θ dependence in both Eq. (7.11) and Eq. (7.12) involve terms proportional to ωD[h(θ)t±

w(θ)τ ] and can be cancelled if

9
4
kt = ±3

2
gτ (7.13)

Neglecting the trivial solution when k = g = 0, Eq. (7.13) implies that at most half of the

signal can be made isotropic. Specifically, if the + solution is satisfied from Eq. (7.13), the

frequency terms proportional to ωD[h(θ)t + w(θ)τ ] will be independent of θ, whereas the

frequency terms proportional to ωD[h(θ)t− w(θ)τ ] will not be independent of θ.

Another difficulty arises due to the φ dependence of Eq. (7.12). If the cos(2φ)

factor were absent from Eq. (7.12), then Eq. (7.11) and Eq. (7.12) could be added or

subtracted together to give cos(3
2ωDh(θ)t) cos(ωDw(θ)τ) ∓ sin(3

2ωDh(θ)t) sin(ωDw(θ)τ) =

cos[ωD(h(θ)±w(θ)τ)], thus requiring only one of the equations in Eq. (7.13) to be satisfied.

The φ dependence in Eq. (7.12) can be overcome by evolution under the Hamilto-

nians, HDET
±1 , given by

HDET
±1 = ωDf(A2,±1T2,2 −A2,∓1T2,−2) (7.14)

where A2,±1 = ±3
2 sin(θ) cos(θ)e±iφ, and f is some scaling factor that is dependent on the
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particular pulse sequence used to generate HDET
±1 from HHF

D . After application of HDET
1 for

a time τDET, a double-quantum filter is then applied. For the double-quantum coherences

originating from ρ0(t, τ), HDET
1 is applied for a time τDET to convert the double-quantum

coherence into z-magnetization, giving:

〈IZ(t, τ, τDET)〉0 = − cos(
3
2
ωDh(θ)t) cos(ωDw(θ)τ) sin(ωDp(θ)τDET)2 (7.15)

where p(θ) = 3f sin(θ) cos(θ). For the double-quantum coherences originating from ρ2(t, τ),

HDET
−1 is applied for a time τDET to convert the double-quantum coherence into longitudinal

z-magnetization, giving:

〈IZ(t, τ, τDET)〉2 = sin(
3
2
ωDh(θ)t) sin(ωDw(θ)τ) cos(2φ)2 sin(ωDp(θ)τDET)2 (7.16)

where τDET is fixed for the experiment. Since to lowest order the frequencies in the t and τ

dimensions are independent of φ, the powder average over φ can be easily performed. For a

cylindrically symmetric sample, the signal from Eq. (7.15) is multiplied by 1/2π
∫ 2π
0 dφ = 1

whereas the signal in Eq. (7.16) is multiplied by 1/2π
∫ 2π
0 cos(2φ)2dφ = 1/2. The signals

originating from ρ0 [Eq. (7.15)] and ρ2 [Eq. (7.16)] can then be combined to give

S1 ± 2S2 ∝ cos(ωD[h(θ)t± w(θ)τ ])

= C cos
[
3
4
kωDt(3 cos(θ)2 − 1)± 3

2
ωDg sin(θ)2τ

]
(7.17)

where t and τ are chosen to satisfy only one of the equations in Eq. (7.13). This gives a
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scaling factor σ of

σ =
3kt

2(t+ τ)
(7.18)

Due to the HDET steps, the total signal is attenuated by the factor C given by

C =
1
3

[
1
2

∫ π

0
dθ sin(θ) sin2

(
3fωD

2
sin(2θ)τDET

)]
=

1
6

[
1 +

∞∑
n=0

J2n(Z)
16n2 − 1

]
(7.19)

where Z = 3fωDτDET, and J2n are spherical bessel functions. The signal intensity is a

maximum when Z ≈ 3.8 with C ≈ 0.24, and C → 1/6 as Z →∞.

7.3.1 Implementation and Simulation of HOMIE

In order to generate the different θ-dependencies in the Hamiltonians of Eq. (7.8),

Eq. (7.10), and Eq. (7.14), the sample must be mechanically rotated. Under sample rotation

about one axis, the A2,0 term in HHF
D [Eq. (7.3)] becomes time-dependent and is given by

A2,0(t) =
1
2
(3 cos2(θL(t))− 1)

=
1
4
(3 cos(θ)2 − 1)(3 cos(θr)2 − 1) +

3
4

sin(θ)2 sin(θr)2 sin(2(ωrt+ φ))

+
3
4

sin(2θ) sin(2θr) sin((ωrt+ φ)) (7.20)

where θr is the angle that the axis of rotation makes with respect to the magnetic field, ωr

is the frequency of sample rotation, and θ and φ are the polar angles that the internuclear
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vector makes with respect to the axis of rotation. Since for a pair of spin 1/2 nuclei

[T2,0, T2,2] = [T2,0, T2,−2] = 0, the addition of a T2,0 term into either one of the Hamiltonians,

HEVO or HDET from the previous section, will not affect the results given in Eq. (7.17).

HEVO can be created by a variety of rotor-synchronized RF pulses, each resulting

in a different factor, g. This factor, g, will ultimately limit the achievable scaling factor, σ,

in Eq. (7.18). A maximal scaling can be achieved by applying N phase-incremented, rotor-

synchronized units, with the kth unit given by [(π/2)0− τd− (π/2)π]φk
, where τd = 1/(ωrN)

and φk = 2π/N. Here the pulses are assumed to be δ-pulses. Repeating the sequence with

an additional π phase shift removes additional terms arising from the CSA and the dipolar

interaction to lowest order (e.g., I±, IZI±). Spinning the rotor at an angle θr and applying

the above sequence gives

g =
3N
16π

sin(
2π
N

) sin(θr)2 (7.21)

To achieve the maximum scaling factor, σ, consider the following experiment (Figure 7.3A):

while spinning at θr = 0◦, the spins evolve under H (Eq. 7.8) for a time t. H can be

generated by sandwiching HHF
D between two (π2 )Y pulses, with an additional π pulse at

t/2 in order to refocus CSA, giving k = 1. Then to generate HEVO the above sequence of

δ−pulses is applied after the rotor has been mechanically flipped to θr = 90◦. In the limit

N → ∞, g = 3
8 . In order to cancel the θ dependence, the evolution times must satisfy the

condition:

t =
2
3
gτ (7.22)



7.3. ISOTROPIC HOMONUCLEAR RECOUPLING (HOMIE) 123

Using g = 3
8 gives τ = 4t, and gives a dipolar scaling factor, σ, of:

σωD =
ωD
t+ τ

(
3
4
t(3 cos(θ)2 − 1) +

3
2
gτ sin(θ)2) =

3ωD
10

(7.23)

This methodology does not require repeated switching back and forth between the

two rotor angles since it is not the Hamiltonians but the frequencies which are combined

in order to get isotropic dipolar spectra. The spectrum contains two peaks with splitting

of ω = ±0.3ωD, which is the predicted maximum splitting obtained by reconstructing the

zero-field Hamiltonian, HZF
D , from the truncated dipole Hamiltonian [93]. Since the limit

N → ∞ is not realistic, a finite N must be chosen. For N = 8, the maximum scaling for

HEVO is g = 0.337, giving τ = 4.44t and σ = 0.28. In the absence of CSA, the resulting

spectrum is shown in Fig. 7.3B. However, in the presence of CSA, the sequence does not

perform nearly as well (Figure 7.3C). Better methods are therefore required in order to

compensate for CSA and offsets effects during the sequence. The post-CNν
n sequences[98],

which are offset and RF-inhomogeneity compensated variants of the CNν
n sequences[55],

contain continuous irradiation, rotor-synchronized pulses. The post-CNν
n consists of N,

phase-incremented blocks over a period of n rotor cycles, where the kth block is given by

[(π/2)0(2π)π(3π/2)0]φk
, where φk = 2πν/N. The pulse sequence post-CN0

2 can be used to

generate H[Eq. (7.8)]. This gives a scaling factor k of

k = −1
2

(
3 cos2(θr)− 1

2

)
= k̄

(
3 cos2(θr)− 1

2

)
(7.24)
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Figure 7.3: (A) An ideal sequence that gives the maximum scaling factor, σ = 0.3. The
spins evolve under H for a time t, with k = 1 in Eq. (7.8) while spinning the rotor at
θr = 0◦. Next the rotor is flipped to θr = 90◦, and the spins evolve under HEVO for a time
τ which, as discussed in the text, can be generated with a maximum g of 3/8. Next the rotor
is then flipped to the magic angle, and HDET is then applied. (B) Simulation of the above
sequence for a pair of dipole coupled spins with ωD/(2π) = 463 Hz, ωCSA/(2π) = 0 Hz, and
ωr/(2π) = 5 kHz. τ = 4.44t was used (as described in the text), giving σ = 0.28. An RF
field strength of 150 kHz was used. (C) Same experiment as in (B) but with ωCSA = 1200
Hz. Notice the deterioration of the isotropic spectrum.
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The pulse sequence post-CN2
2 can be used to create HEVO since it generates terms like

A2,±2T2,∓2 in the Hamiltonian. However, unwanted terms like A2,±1T2,∓1 and A2,±1I∓

are also generated. These unwanted terms can be removed by applying another cycle of

post-CN2
2 but with an additional π phase shift. The factor, g, for the (post-CN2

2)0 −

(post− CN2
2)π becomes

g =
3 sin(4π

N )N3 sin(θr)2

32π(N2 − 1)

= ḡ sin2(θr) (7.25)

Finally, the detection Hamiltonian, HDET
±1 , can be created by using the post-C7±1

2 sequence

[98], with the only requirement being that the sample is not spinning at either θr = 0◦

or θr = 90◦, due to the fact that the scaling factor, f , from Eq. (7.14) is zero under

these conditions. Evolution under HDET only affects the intensities of the resulting signal

[Eq. (7.17)], but not σ.

The requirement of spinning the sample at different angles during the course of

the experiment, while leading to a larger σ, can be experimentally demanding. However,

the above methodology can also be applied to samples spinning about only one rotor axis.

Under this condition, the evolution must satisfy

∣∣∣∣ ωDt+ τ

(
3
2
k̄t

(3 cos2(θr)− 1)
2

(3 cos2(θ)− 1)
2

± 3
2
ḡτ sin2(θr) sin2(θ)

)∣∣∣∣
=

∣∣∣∣ 3kωDt
2(t+ τ)

∣∣∣∣ (7.26)

When θr 6= 0◦, t and τ must typically be multiples of the rotor period. From Eq. (7.26),
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the rotor angle (θr) that the sample must be spun at is given by

θr = arccos

√
3k̄t± 4ḡτ
9k̄t± 4ḡτ

 (7.27)

7.3.2 Experimental Demonstration of HOMIE

Experiments were performed on a Chemagnetics (now Varian, Palo Alto, CA) spec-

trometer with a 4.2 T magnet (180 MHz 1H). The sample used was 13C2-methyl dimethyl

malonic acid (DMMA) diluted to 30 % in natural abundance dimethyl malonic acid and

was provided by Herbert Zimmermann. The sample was spun at 5 kHz in a 4mm HX

Chemagnetics probe. The spinning angle was set manually. Following a ramped cross po-

larization period, proton decoupling of 150 kHz was used during the indirect evolution as

well as in the directly detected dimension. Eighty t1 points were collected in the indirect

dimension with a dwell of 1.2 ms. The experiment in Figure 7.4 was performed in order to

obtain an isotropic dipolar spectrum. H was created by applying the sequence post-C70
2,

with a corresponding scaling factor of k̄ = −1/2 [Eq. (7.24)]. HEVO was created using a

(post-C72
2)0 − (post− C72

2)π sequence, with a corresponding scaling factor of ḡ = 0.208[Eq.

(7.25)]. Sixteen cycles of HDET
± were used, allowing theoretically C = 0.23 amount of the

total magnetization to be converted into signal [Eq. (7.48)]. Experimentally, ≈ 16% of the

magnetization was converted into signal. With the condition τ = 2t, Eq. (7.27) gives a rotor

axis of θr = 64.7◦, and Eq. (7.26) gives a scaling factor of σ = −0.0566. Figure 7.5 shows the

experimental and simulated spectra. The spectrum consists of two peaks at ±(26.3 ± 3.3)

Hz. Using the scaling factor σ = −0.0566 results in an estimated distance between the

two 13C nuclei of 2.54 ± 0.16 Å, which is in good agreement with the previously reported
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Figure 7.4: Actual experiments performed in order to obtain isotropic dipolar spectra. The
pulse sequence along with the corresponding phase cycle is presented. The first four experi-
ments correspond to evolution from ρ0 in Figure 7.2. The last four experiments correspond
to evolution from ρ2 in Figure 7.2. The last four experiments have to be performed twice
as required from Eq. (7.17).
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distance[99] of 2.541 Å. Angle missettings, pulse imperfections, and higher-order terms in

the average Hamiltonians could all contribute to deviations from the predicted behavior.

Homonuclear isotropic evolution works by refocusing the anisotropic contributions of the

dipolar interaction by generating a series of various Hamiltonians whose frequencies can

be used to cancel the anisotropic terms. Although the experimental scaling of the dipolar

couplings was roughly a factor of two lower than the experimentally observed scalings for

the previous ZFHF experiments, it was shown that both methods give the same theoretical

maximum scaling of σ = 0.3. Larger scaling factors can be obtained by spinning the sample

at multiple angles as discussed earlier. Since the refocusing of the anisotropy comes from

combining the frequencies and not the Hamiltonians, the sample does not have to be repeat-

edly switched between different angles, which is experimentally feasible but still difficult.

The ability to switch between multiple spinning angles would be useful in correlating the

isotropic dipolar spectra to the magic-angle spinning isotropic chemical shift spectra, which

can be done by applying HDET at the magic-angle as shown in Figure 7.3.

There are several limitations that the HOMIE method has that the ZFHF does

not. First of all, HOMIE only works for pairs of homonuclear coupled spins, whereas ZFHF

constructs the zero-field Hamiltonian for any number of spins. Although it may be possible

to extend HOMIE to higher number of spins, HOMIE would only be useful in samples of

randomly labelled spin pairs. Secondly, only a fraction of the magnetization, C (Eq. (7.48))

is used in the HOMIE experiment, whereas all the magnetization is potentially used in the

ZFHF experiment.
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Figure 7.5: Simulation (dashed line) and experimental (solid line) data of the sequence
shown in Figure 7.4 on 13C2-methyl dimethyl malonic acid (DMMA). Simulation attempted
to model DMMA with ωD/2π = 463Hz, ωCSA/2π = 1200Hz, while spinning at 5 KHz. A
10 Hz line broadening was added to the simulation to match the experiment as best as
possible. Both the simulated and the experimental spectra give a good match to the scaling
factor of σ = 0.0566. The small spectrum in the left hand corner is the static experimental
spectrum of DMMA.
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7.4 Isotropic PDLF Spectroscopy (HETIE)

One of the limitations of the HOMIE methodology is that it appears to be only ap-

plicable for a pair of homonuclear dipole coupled spins, although extensions of the method-

ology to larger number of spins may be possible. In contrast, Tycko’s zero-field in high-field

is applicable to any number of spins, since the zero-field Hamiltonian is generated. Although

Tycko’s methodology has just been demonstrated for homonuclear systems, it is possible

to extend the method to create the isotropic heteronuclear zero-field Hamiltonian. To see

this consider the following. The heteronuclear dipole interaction between an I and S spin

is given by

HHF = ωDA2,0(θL)2IZSZ (7.28)

where θL is the angle that the internuclear vector makes with respect to the Zeeman field.

Note that the ”flip-flop” terms are not secular in high-field and therefore are effectively

not present as shown in the above Hamiltonian. To see that Tycko’s methodology can be

applied to generate the zero-field Heteronuclear dipolar Hamiltonian, HHF can be rewritten

a

HHF
HET =

2
3
ωDA2,0(θL)

(
3IZSZ − ~I · ~S

)
+

2
3
ωDA2,0(θL)~I · ~S

=
2
3
ωDA2,0(θL)T2,0 +

2
3
ωDA2,0T0,0

=
2
3
ωD

 ∑
l=0,2,4

C(l, 0, 2, 0, 2, 0)Fl,0 + C(2, 0, 2, 0, 0, 0)F2,0

 (7.29)
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If a pulse sequence is applied on both the I and S spins that removed the second and fourth

rank terms from HHF in the homonuclear case, the heteronuclear zero-field Hamiltonian is

obtained with a maximum scaling factor now given by σMAX = 2/15 due to the extra factor

of 2/3 in the above Hamiltonian. The homonuclear couplings can in principle be removed

without removing the heteronuclear interactions since the I and S spins can be independently

manipulated. However, consider the following best case scenario. Look at the case when

there are two I spins and one S spin and for the moment assume that the dipole-dipole

coupling between the I spins has been removed. The resulting zero-field Hamiltonian is

given by

HZF =
2∑

m=−2

[
ω1,2
D (−1)mT 1,2

2,mA
1,2
2,−m + ω1,3

D (−1)mT 1,3
2,mA

1,3
2,−m

]
(7.30)

where spin 1 is the S spin, and spins 2 and 3 are the I spins. The spectra corresponding

to evolution of total magnetization of spins 2 and 3 are shown in Figs. 7.6A and 7.6C for

two different sets of dipolar couplings. The spectra contains features that are not simply

related to the couplings. This is due to the fact that in general, the zero-field couplings do

not commute between spins, i.e., [HZF
1,2 ,H

ZF
1,3 ] 6= 0. The spectra contain features that are not

linear in the number of spins (similar to the second order spectra of Chapter 3), making

interpretation of the resulting spectra difficult.

This is in contrast to standard proton-detected local field (PDLF) spectroscopy

as shown in Figs. 7.6B and 7.6D. Here the high-field Hamiltonian (Eq. (7.28)) was used

instead. In the absence of homonuclear dipolar couplings, the resulting spectra are lin-

ear in the number of spins, with the splitting of the lines about zero giving the effective
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Figure 7.6: Comparison of zero-field proton-detected local field spectroscopy with high-
field proton-detected local field spectroscopy for two sets of couplings. In (A) and (B),
ω1−3
D /(2π) = 700 Hz and ω1−3

D /(2π) = 300 Hz in (C) and (D). ω1−2
D /(2π) = 1000 Hz

in all cases. The zero-field Hamiltonian (Eq. (7.30)) was used in (A) and (C), and the
spectra corresponding to evolution of the total magnetization of spins 2 and 3 are shown,
with intensity in arbitrary units (A.U.). The high-field Hamiltonian, H = 2ω1−2

D I1
ZI

2
Z +

2ω1−3
D I1

ZI
3
Z , was used to calculate the evolution of transverse magnetization of spins 2 and

3, with intensity shown in arbitrary units.
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heteronuclear coupling. In most PDLF experiments, the protons are decoupled from one

another and evolve under the heteronuclear coupling to another nucleus, typically a 13C.

PDLF experiments typically are implemented in oriented phases as discussed in Chapter 3

where non-zero dipolar couplings exist, but the couplings are motionally averaged to a sin-

gle value, i.e., there is no powder averaging. This results in N sharp doublets where the

spectral information (the motionally averaged heteronuclear dipolar couplings) can be read

off quite readily. Applications of PDLF spectra to solids have been performed; however,

the resulting spectra are typically broad and difficult to interpret.

So the question remains: is it possible to produce an isotropic heteronuclear dipolar

spectra while maintaining the linearity in the number of couplings? The answer is no if

the route taken is to produce the zero-field heteronuclear Hamiltonian, due to the fact that

the zero-field couplings do not commute. However, a HOMIE-like method could potentially

work. In the following, an alternative method, called Heteronuclear Isotropic Evolution,

HETIE, will be introduced. Like the HOMIE methodology introduced earlier, HETIE

relies on the removal of the anisotropic part of the frequency by evolving under two different

Hamiltonians and detecting under a third. First the theory for HETIE is presented along

with a direct comparison with HOMIE. Finally, pulse sequences are described which are

then used to observe the HETIE technique on an ideal sample.

7.4.1 Theory of heteronuclear isotropic spectra

In the previous section about the theory of HOMIE, the Hamiltonians needed

in order to create the HOMIE spectra were either purely double-quantum (HEVO,HDET)

or a combination of double- and zero-quantum operators (H). In addition, the evolution
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pathways chosen in the HOMIE experiment were restricted to the two-dimensional subspace

{|α1, α2〉, |β1, β2〉}, whereas evolution from the states |α1, β2〉, |β1, α2〉 didn’t contribute to

the HOMIE signal. To see this, look at the matrix forms of H,HEV O,HDET in the basis

|α1, α2〉, |β1β2〉, |α1, β2〉, |β1, α2〉

H = ωD

(
3I1
XI

2
X − ~I1 · ~I2

)

=
ωD
4



−1 3 0 0

3 −1 0 0

0 0 1 1

0 0 1 1


(7.31)

HEVO,DET = ωD (gT2,2 + g∗T2,−2)

= ωD



0 g 0 0

g∗ 0 0 0

0 0 0 0

0 0 0 0


(7.32)

These Hamiltonians are block-diagonal, and the evolution pathways used in the HOMIE

experiment were only in the {|α1, α2〉, |β1, β2〉} subspace. The important point is that

the relevant subspace is two-dimensional. Thus when considering a spin 1/2 nucleus, the

corresponding Hamiltonians can be easily written by analogy by making the following cor-

respondence: |α1, α2〉 → |α〉 and |β1, β2〉 → |β〉. The corresponding Hamiltonians are (up
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to an overall constant)

H =
∑
j

kωjD
3 cos2(θj)− 1

2
IjX2SZ (7.33)

HEVO =
∑
j

gωjD sin2(θj)
(
exp(i2φj)I

j
+ + exp(−i2φj)Ij−

)
2SZ (7.34)

HDET
±1 =

∑
j

fωjD sin(2θj)
(
exp(±iφj)Ij+ + exp(∓iφj)Ij−

)
2SZ (7.35)

since the heteronuclear couplings between I spins commute (i.e., the homonuclear interac-

tions between I spins have been removed).

So starting with ρ(0) =
∑

j ajI
j
Z , evolution under H for a time t gives

ρ(t) = exp(−itH)ρ(0) exp(itH)

=
∑
j

aj

(
IjZ cos

(
k(θj)ω

j
Dt

)
− IjY sin

(
k(θj)ω

j
D2SZt

))
=

∑
j

aj

(
ρj0(t) + ρj1(t)

)
(7.36)

ρj0 = IjZ cos
(
k(θj)ω

j
Dt

)
(7.37)

ρj1 = −IjY sin
(
k(θj)ω

j
D2SZt

)
(7.38)

where k(θ) = (3 cos2(θj) − 1)/2. Each of the pathways, ρ0 and ρ1, can be distinguished

by their rotational property under a Z-rotation as discussed earlier in the HOMIE section.

Thus each pathway will be considered separately in the following. Evolution for a time τ
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ρ(0)

ρo(t)

ρ
1

(t)

U(t)

UE V O(τ) ρo(τ,τ)

ρ1(τ,τ)

S Q

S Q

UDE T(τd)
Z

  S Q

UDE T(τd)
Z

  S Q

1

1

UDE T(τd)1

UDE T(τd)−1

Z

Z

S Q

S Q

Figure 7.7: The Basic procedure in order to obtain isotropic proton detected local field
dipolar spectra. An initial density matrix, ρ(0) =

∑
j ajI

j
Z evolves under H [Eq. (7.33)] to

give a z-magnetization (Z) term, (ρ0), and single-quantum (SQ) term, (ρ1). Both of these
terms then evolve under HEVO [Eq. (7.34)] and only the Z components are kept. Next,
evolution occurs from ρ0(t, τ) and ρ1(t, τ) under HDET

1 [Eq. (7.35)] into SQ coherence. The
SQ coherences are then converted back into z-magnetization for detection, using either
HDET

1 for the pathway originating from ρ0 or HDET
−1 for the pathway originating from ρ1.
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under HEVO gives the following:

ρ0(t, τ) = exp
(
−iτHEVO

)
ρ0(t) exp

(
iτHEVO

)
=

∑
j

ajI
j
Z cos

(
k(θj)ω

j
Dt

)
cos

(
2g(θj)ω

j
Dτ

)
+
i

2
exp(−i2φj) sin

(
2g(θj)ω

j
D2SZτ

)
ajI

j
+

− i
2

exp(i2φj) sin
(
2g(θj)ω

j
D2SZτ

)
ajI

j
− (7.39)

ρ1(t, τ) = exp
(
−iτHEVO

)
ρ1(t) exp

(
iτHEVO

)
= −

∑
j

ajI
j
Y sin

(
k(θj)ω

j
D2SZt

)
[cos2

(
2g(θj)ω

j
D2SZτ

)
+sin2

(
2g(θj)ω

j
D2SZτ

)
sin(4φj)]

+ajI
j
X sin

(
k(θj)ω

j
D2SZt

)
sin2

(
2g(θj)ω

j
D2SZτ

)
cos(4φj)

+ sin
(
k(θj)ω

j
D2SZt

)
sin

(
2g(θj)ω

j
D2SZτ

)
cos(2φj)ajI

j
Z (7.40)

where g(θj) = g sin2(θj), and the identities sin(2gSZ) = 2SZ sin(g) and (2SZ)2 = 1 were

used. After application of HEVO, the terms proportional to I± are phase-cycled away,

leaving only the Z components of the density matrix. As before, the Z-magnetization at

the end of HEVO is given by

〈IZ(t, τ)〉0 = Tr (ρ0(t, τ)IZ)

=
∑
j

aj cos
(
k(θj)ω

j
Dt

)
cos

(
2g(θj)ω

j
Dτ

)
(7.41)

〈IZ(t, τ)〉1 = Tr (ρ1(t, τ)IZ)

=
∑
j

aj sin
(
k(θj)ω

j
Dt

)
sin

(
2g(θj)ω

j
Dτ

)
cos(2φj) (7.42)
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The θj dependence in both Eq. (7.41) and Eq. (7.42) could be cancelled if

3
2
kt = ±2gτ (7.43)

Since both of these equations can’t be satisfied simultaneously, at most half of the

signal can be made isotropic, as in the HOMIE case. Similar to the HOMIE experiment,

the anisotropic portion of the signal can be eliminated by removing the φj in Eq. (7.42),

such that the signals could be added or subtracted to give

cos(k(θj)t) cos(2g(θj)τ)± sin(k(θj)t) sin(2g(θj)τ) = cos(kθjt∓ 2g(θj)τ). (7.44)

By evolving under HDET
±1 given in Eq. (7.35) the φj is removed. The pathway originating

from ρ0 evolves for a time τDET under HDET
1 . Next a filter is applied that only allows

single-quantum coherences through as shown in Figure 7.7. Finally HDET is applied again

for a time τDET, the Z component of magnetization is measured to give the corresponding

signal of

S0 = Tr [IZρ0(t, τ, τDET)]

=
∑
j

aj cos(k(θj)t) cos(2g(θj)τ) sin2(2f(θj)τDET) (7.45)

The pathway originating from ρ1 first evolves for a time τDET under HDET
1 . Next a

filter is applied that only allows single-quantum coherences through as shown in Figure 7.7.

Finally, HDET
−1 is applied for a time τDET and the z component of magnetization is measured
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to give

S1 = Tr [IZρ1(t, τ, τDET)]

= −
∑
j

aj sin(k(θj)t) sin(2g(θj)τ) sin2(2f(θj)τDET) cos2(2φj) (7.46)

Taking into account the factor of 1/2 from the powder average over φj , the signals from the

two experiments can be combined as

S0 ± 2S1 =
∑
j

ajCj(τDET) [cos(k(θj)t± 2g(θj)τ)] (7.47)

where ajCj are the corresponding signal intensities for spin j given by

ajCj =
1
3

[
1
2

∫ π

0
dθ sin(θj) sin2

(
2fωjD sin(2θj)τDET

)]
=

aj
6

[
1 +

∞∑
n=0

J2n(Zj)
16n2 − 1

]
(7.48)

where Zj = 4fωjDτDET, and J2n are spherical bessel functions. The signal intensity is a

maximum when Z ≈ 3.8 with C ≈ 0.24aj , and C → aj/6 as Z →∞.

7.4.2 Implementation and Simulation of HETIE

There exist two additional challenges in implementing the requisite Hamiltonians

for the HETIE experiments over that of the HOMIE experiments. First of all, the homonu-

clear dipole-dipole interactions between the I spins (and the S spins if there are more than

one present) must be removed, since the above theory deals only with isolated I spins cou-

pled to an S spin. The second requirement is that the chemical shift anisotropy (CSA) of
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the I spins must also be removed. Since the heteronuclear dipolar coupling and the CSA

both have second-rank spatial components and are linear in the spin operator IZ , they can

only be separately manipulated by applying pulses on the S spin.

HEVO can be created by a variety of rotor-synchronized RF pulse sequences, each

resulting in a different scaling factor , g. For the moment, consider the case where there

is only an IS spin pair. A maximal scaling can be achieved for g by applying N, phase-

incremented, rotor-synchronized units, with the kth unit given by

[(π/2)0 − τd − (π/2)π]φk
(7.49)

where τd = 2π/(ωrN) and φk = 4π/N . Here the pulses are assumed to be perfect δ-pulses.

Next the sequence is repeated with an extra π phase shifted added and is sandwiched

between two 180◦ pulses on the S spin. This helps to refocus the CSA terms while keeping

the heteronuclear couplings to lowest order. Spinning the rotor at an angle θr = 0 and

applying the above sequence for a time τ gives

g =
3N sin2(θr)

32π
sin

(
2πωrτd
N

)
(7.50)

To achieve the maximum scaling, σ, consider the following hypothetical experiment: the

sample first spins along θr for a time t while the sequence

[(π/2)Iπ/2
(
−t” − (π)I0(π)S0 − 2t” − (π)Iπ(π)Sπ − t”−

)N
(π/2)I3π/2] (7.51)

is performed, where t = 4Nt”. This produces the average Hamiltonian, H, with k = 1.
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Next the rotor axis is flipped down to θr = 90◦, and HEVO is created using the sequence

described using Eq. (7.49) for a time τ = 2mπ/ωr, where m is some integer due to the fact

that HEVO must be created over some integer multiple of the rotor period. In the limit that

N → ∞, Eq. (7.50) shows that g → 3/16. From Eq. (7.43), the anisotropic component of

the heteronuclear dipole interaction can be removed when τ = +3t/(4g). Using g = 3/16

gives τ = 4t and gives a dipolar scaling factor, σ, of

σωD =
ωD
t+ τ

(
t

2
(3 cos2(θ)− 1) + 2gτ sin2(θ)

)
=
ωD
5

(7.52)

which is the theoretical maximum scaling factor for creating the zero-field Hamiltonian for

a heteronuclear spin pair.

The above result is purely hypothetical since the limit N → ∞ is not realistic.

In addition, for a system of I spins coupled to an S spin, the obtainable scaling factor is

reduced due to any homonuclear decoupling method used since some of the experiment has

to be performed away from the magic angle. It can be imagined that an extremely large

RF is used to decouple the I spins from each other on a faster time scale than that used to

create H,HEVO, and HDET. In this scenario, the scaling factor would be reduced by at least

a factor of 1/
√

3, since that is the largest scaling factor any pure multipulse homonuclear

decoupling sequence can have.

A more realistic set of pulse sequences that can be used to create H,HEVO, and

HDET
±1 while removing both the CSA and homonuclear dipolar interactions are shown in

Figure 7.8.

Each of these pulse sequences are composed of small blocks which can be repre-
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Figure 7.8: Basic pulse sequences used to createH,HEVO,HDET
± needed for HETIE. (A)The

pulse sequence which creates H (Eq. (7.33)) to lowest order and the corresponding prop-
agator U(t). ωRF = (15/2)ωr, and the total time step for propagator U(t) is t = 8π/ωr.
(B) The pulse sequence which creates HEVO to lowest order and the corresponding prop-
agator, UEVO(τ). ωRF = (27/4)ωr and the total time step for the propagator UEVO(τ) is
τ = 8π/ωr. (C) and (D) are the pulse sequences and corresponding propagators for HDET

+

and HDET
− respectively. ωRF = (15/2)ωr and the time step for the propagators UDET

± (τDET)
is τDET = 8π/ωr
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sented by the sequence

[(π/2)X − (π/2)Y − (π/2)X ]φ [(π/2)Y − (π/2)X − (π/2)Y ]φ1
(7.53)

U(t) = exp (−2i[φ1 − φ]) exp(−itcycH)

H =
∞∑
n=0

H
(n) (7.54)

where tcyc is the total time of the block of pulses (3π/(ωRF ), and H is the average Hamilto-

nian theory over the time tcyc, where Hn is the nth order average Hamiltonian. The zeroth

order average Hamiltonian is given by

H
(0) =

2∑
k=−2

2∑
p=−2

∑
l=0,1,2

b
(0)
k,p,lA2,kCl,p (7.55)

where A2,k are spatial tensors and C l,p are spin tensors, l is the rank of the spin tensor in

the I space (i.e., both IZ and IZSZ are first rank terms, whereas 3IiZ3IjZ − ~Ii · ~Ij are second

rank terms). The coefficients, b(0)k,p,l can be determined by average Hamiltonian theory. The

coefficients, b(0)
k,±1,1, for terms like Ij+ and Ij±SZ are given by

b
(0)
k,±1,1 = −d2

k,0(θr)v
3
2 exp(∓iφ) exp

(
±iπ

4

) (
exp(∓i[φ− φ1])v3 − 1

)
X cos

(
π

4
∓ πkZ

4

)
cos

(
πkZ

2

)
2

3π[(kZ)2 − 1]
(7.56)

where Z = ωr/ωRF , and v = exp[i(kZπ)/2]. The coefficients, b(0)k,±1,2, for terms like IiZI
j
± +
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Ii±I
j
Z are given by

b
(0)
k,±1,2 = 2d2

k,0(θr) exp(∓iφ)v
3
2 exp

(
∓iπ

4

) cos
(
π
4 ±

πkZ
4

)
π

[
4− (kZ)2

] [
v3 exp(∓i[φ− φ1]) + 1

]
(7.57)

Note that when v3 exp(±i[φ−φ1]) = 1, b(0)k,±1,1 = 0 while b(0)
k,±1,2 6= 0, and when v3 exp(±i[φ−

φ1]) = −1, b(0)
k,±1,1 6= 0 while b(0)

k,±1,2 = 0. This is due to the units [(π/2)X(π/2)Y (π/2)X ]

and [(π/2)Y (π/2)X(π/2)Y ] acting like composite 180◦ pulse (with an additional Z rotation).

Under a 180◦ pulse, I± → −I∓, while IiZI
j
± + Ii±I

j
Z → IiZI

j
∓ + Ii∓I

j
Z , hence the ability of

these sequences to distinguish between odd and even ranked spin tensors. Note also that

b
(0)
0,0,1 = b

(0)
0,0,2 = 0, so that these sequences are compensated for offset and the static portion

of the homonuclear dipolar interaction.

The extra Z rotation of phase −2[φ1 − φ] in Eq. (7.54) propagates through by

repeatedly applying the basic unit, which results in each subsequentH to be phase shifted by

∆ = −2[φ1−φ] from the previous Hamiltonian, analogous to the CNn
ν sequences described

earlier in the HOMIE experiments. The propagator over N applications of the basic unit is

given by

UN = T

N∏
k=1

exp
(
PZ(∆ exp

(
−iτcycHk

))
= PZ (∆N)T

N∏
k=1

exp
[
−iτcycPZ (−∆(N − 1))HkPZ (∆(N − 1))

]
(7.58)
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where For ∆ = 2πν/N , only those terms of the form A2,mCl,p with m and p satisfying

nm− pν = NZ (7.59)

where Z is an integer, will be present to lowest order. Notice that this is the exact same

selection rule given for the CNn
ν sequences, which should not be surprising, since Eq. (7.58)

looks identical to a pulse sequence where an average Hamiltonian, H, is created N times but

with the kth Hamiltonian phase shifted by ∆(k − 1) with respect to the first Hamiltonian.

Although there exist numerous ways to produce H, one simple way is application

of the sequence as shown in Figure 7.8A. This sequence represents a hybrid of the RNν
n

sequences with a CNν
n sequence. Formally, this sequence is equivalent to a C50

2 sequence,

which selects for terms, A2,mTl,p with p = {0,±1,±2} and m = 0 as given in Eq. (7.59). In

addition, the composite 180◦ pulses remove any A2,0T2,0 and terms such as chemical shift,

CSA, and heteronuclear coupling as discussed earlier. Finally, fact that the C unit is made

up of a combination of composite 180◦ helps to remove the A2,0T2,±1 terms to lowest order

(Eq. (7.56) and Eq. (7.57)). The two composite 180◦ pulses are repeated with an additional

phase shift of π/2 to remove the A2,0T2,±2 terms. A 180◦ pulse is applied to the S spin,

and the sequence is repeated again with an additional π phase shift in order to refocus any

recoupled CSA and shift terms. The zeroth-order average Hamiltonian is given by

H = k
∑
j

3 cos2(θj)− 1
2

2ωjDI
j
XSZ

k =
4
3π

3 cos2(θr)− 1
2

= k̄
3 cos2(θ)− 1

2
(7.60)
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The total time for one cycle of H is 8π/ωr.

HEVO can be created by numerous methods, and one such method is shown in

Figure 7.8B, which corresponds to two R185
2 phase shifted by π with respect to one another

with a 180◦ pulse on the S spin in between the two cycles. This gives a zeroth-order average

Hamiltonian of

HEVO = g
∑
j

sin2(θj)2ω
j
DSZ

(
Ij+ exp(i2φj) + Ij− exp(−i2φj)

)
g = sin2(θr) cos

(
π

4
− πωr

2ωRF

)
cos

(
πωr
ωRF

)
sin2(θr)

2
[
4

(
ωr
ωRF

)2
− 1

]
= ḡ sin2(θr) (7.61)

Finally, the detection Hamiltonian, HDET
± , can be created using the sequence shown in

Figures 7.8C and 7.8D, which formally correspond to the sequence C5∓4
2 and produce the

average Hamiltonian

HDET
± = f

∑
j

sin(2θj)2ω
j
DSZ

(
Ij+ exp(±iφj) + Ij− exp(∓iφj)

)
(7.62)

f =
cos

(
π
4

)
sin(2θr) cos

(
π
4 −

πωr
4ωRF

)
cos

(
πωr

2ωRF

)
π

[(
ωr
ωRF

)2
− 1

]
= f̄ sin(2θr) (7.63)

Note that to create HDET
− with the same f̄ dependence required using switching the order

of the composite 180◦ pulses ind Figure 7.8D.

To simplify the experiment, a solution can be found for a single rotor axis. Under



7.4. ISOTROPIC PDLF SPECTROSCOPY (HETIE) 147

this condition, the evolution must satisfy

∣∣∣∣ ωDt+ τ

(
k̄rt

(3 cos2(θr)− 1)
2

(3 cos2(θ)− 1)
2

± 2ḡτ sin2(θr) sin2(θ)
)∣∣∣∣

=
∣∣∣∣ kωDt(t+ τ)

∣∣∣∣ (7.64)

When θr 6= 0◦, t and τ must both be a multiple of the rotor period. In addition, HDET

must be able to be created at the given rotor axis, which means solutions near 90◦ and 0◦

must be discarded. From Eq. (7.64), the rotor angle (θr) that the sample must be spun at

is given by

θr = arccos

√
3k̄t± 8ḡτ
9k̄t± 8ḡτ

 (7.65)

7.4.3 Experimental Demonstration of HETIE

The experimental implementation of the HETIE was tested on a natural abun-

dance sample of ferrocene (Fe(C5H5)2) which was doped with 2% by weight cobaltocene

(Co(C5H5)2) to aid in shortening the T1 relaxation time of the ferrocene protons to 1 s

from what is normally ˜60 s. The sample was prepared by melting the two components

together and was ground to a powder and packed into a 4 mm MAS rotor. The experiment

was performed at a 1H resonance frequency of 300.986 MHz exactly on resonance for the

protons of the ferrocene. The angle was set externally to 73.9◦ ± 0.2◦ with the use of a

protractor and a long rod which was exactly coaxial with the spinning axis. A 1H spectrum

obtained under the conditions of the HETIE experiment is shown in Figure 7.9. The 1H
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Figure 7.9: 300.986 MHz 1H NMR spectrum of FeCp2 spinning 15 kHz at 73.9◦

linewidth is 5.6 kHz and is clearly not isotropic due to the 1H-1H dipolar couplings and 1H

CSA which are only scaled when spinning 15 kHz at 73.9◦.

The spectrometer used in these experiments was an Infinity-plus spectrometer

(Varian Inc., Palo Alto, CA). A Chemagnetics (now Varian Inc., Palo Alto, CA) 4mm

Apex-HX MAS probe was used. The RF amplitudes for the sequence were calibrated by

finding the maximum intensity of the required π
2 -pulse on proton. The π-pulse on 13C was

calibrated using a CP (cross-polarization) and observing where the cross-polarized signal’s

phase was inverted after the application of a fixed π-pulse. The pulse sequence was rotor

synchronized by controlling the spinning speed at 15 kHz ±3 Hz.

One of the difficulties with implementing the HETIE sequence was keeping the

requirements of RF and rotor synchronization within experimental reality. The specific

experimental limitations that had to be dealt with were the fact that the probe could only

spin the sample up to 20 kHz and the maximum achievable RF powers were ν1= 150 kHz.
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While the maximum spinning speed is practically a ceiling, the RF power is more flexible.

Although the RF power of 150 kHz could be utilized, the RF pulse quality diminishes with

an increasing RF power. For this reason, often time better performance is achieved at

lower RF powers such as ∼ 100 kHz which was the RF used in the HETIE experiments

below. This is due to a fixed pulse rise and fall time of about 300 ns regardless of the RF

power. Thus, when the π
2 -pulse is 1.67 µs (as it is in 150 kHz RF) a significant fraction

of the applied pulse has an ill-defined phase and amplitude. Although the experiment

as written attempts to compensate rise time effects by keeping the pulse in an always-on

state, however the phase shifts (although quoted as changing in 50 ns) in actuality occur in

over 100 ns. Given these limitations, special pulse sequence design considerations must be

addressed when implementing a windowless (RF always on) multiple-pulse sequence such

as is presented here (for the pulse sequences see Appendix A.3).

7.4.4 Results

The analytical determination of the scaling factor for the HETIE sequence as im-

plemented and according to Figure 7.10 would yields a scaling factor of σ=0.0817. Unfortu-

nately, although ferrocene is an ideal sample due to the scaled dipolar couplings and sym-

metry, there exists more than 30 different structures in the Cambridge Structure Database

with C-H bond lengths varying in the range of 0.99 to 1.1 Å. We have restricted our anal-

ysis of the bond lengths to more modern neutron diffraction studies where the diffraction

method has a better chance of detecting the proton positions. In an attempt to predict the

expected values for the observed scaled couplings we selected the bond lengths from the

neutron structure with the best experimental parameters[100]. In the study we chose, they
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Figure 7.10: Actual experiments performed for demonstration of HETIE methodology to
obtain isotropic proton detected local-field spectra. The pulse sequence along with the
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Figure 7.7. The last four experiments correspond to evolution along ρ1 in Figure 7.7. The
last four experiments have to be performed twice as required from Eq. (7.17).
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attempted to treat the complex Cp motions in their diffraction analysis. Their analysis gave

a variable interpretation of the carbon-proton internuclear distances (standard deviation =

0.02 Å) for room temperature samples of ferrocene. We used their structure found in the

Cambridge Structure Database (CSD ref. # FEROCE29) which reports C-H distances of

1.04, 2.18, and 3.28 Å. In addition to the work by Brock et al., there has been much discus-

sion on the proper interpretation of the ferrocene diffraction data and we hope that NMR

might be able to provide some additional insight[101].

The only C-H couplings necessary to consider are the intra-ring nuclei since the fast

motion of the Cp ring effectively decouples each ring from every other including within the

FeCp2 molecule. This ring motion also effects the observable couplings since the motional

timescale is much greater than that of the couplings; this scales the couplings by a factor

P2(cos θ) where θ is the angle between the C-H vector and the axis of fast motion, i.e. 90◦

and thus scales by 1
2 .

Given the C-H distance uncertainties, it is important to consider the error when

comparing expected dipolar coupling results. Using the distances above and the associated

standard deviation from the different analyses of the same diffraction data, we expect the

unique observed dipolar couplings of room temperature ferrocene between a single 13C on

the ring and the protons as scaled by the HETIE experiment to be 1026 ±232, 111.5 ±12,

33 ±2.4 Hz. The error in these scaled couplings may seem quite large, however, the 1
r3

dependence of the coupling amplifies errors at small distances.

These scaled coupling values are determined from the ideal scaling factor from

above which lacks any inclusion of interactions which might degrade the performance of the

sequence. To address this, we have performed simulations of a three spin system both as an
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ideal one with no CSA and a weak homonuclear proton-proton coupling (for the simulation

input files, see Appendix A.2). As is shown in Figure 7.11A, the peaks are isotropic and

sharp at the correct frequencies (as determined from the analytical scaling factor). It should

be noted that since the spectral range is determined by the spinning speed divided by the

number of evolution units per dwell (15 kHz / 8), the largest C-H coupling is actually under-

sampled and is effectively folded in from the edges of the spectrum. This is an unfortunate

artifact, however it is necessary given our maximum RF restrictions. Besides, the couplings

which are expected to be of greatest interest for structure determinations will typically be

those with small coupling values.

In continuing with the investigation of the performance of the HETIE sequence,

Figure 7.11B shows the results of a simulation on a more realistic sample with non-zero

Euler angles relating the axes of the interactions, as well as a 5 kHz CSA on each of

the protons. Figure 7.11B indicates that the weaker coupling peaks are virtually unaffected

while the larger coupling peak has some broadening which we attribute to a larger magnitude

cross-term since the underlying dipolar coupling is significantly larger. This simulation in

Figure 7.11B is in excess of what has previously been seen for the CSA of protons in

ferrocene[102] with a ∆σ(= σ‖ − σ⊥) of -6.5 ±0.1 ppm.

Finally, in Figure 7.12 the comparison is made between the ideal simulation and

that of the actual experimental signal. The first thing to note is that the spectrum of

Figure 7.12 is a power spectrum (Abs(f(ω))2) which is necessary to facilitate the comparison

with the simulation and this low signal to noise spectrum. Secondly, in the experimental

spectrum, there is a large zero peak which has been truncated so that the peaks of interest

are more clearly displayed. The origin of this peak is somewhat uncertain, however we
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suspect that it is related to the signal decay caused by the accumulation of pulse and phase

errors, but requires further investigation.

The largest coupling peaks in the experimental spectrum appear to be at close to

exactly the correct frequency (taking into account the spectral folding) at 1090 ± 10 Hz.

The next largest coupling peak occurs at 147 ± 10 Hz and is slightly different from that

found in the simulation (and noted by the dashed lines in Figure 7.12). The smallest C-H

coupling peak can not be observed unless the large zero peak is deconvolved which is shown

in the bottom plot of Figure 7.12 and it roughly occurs at 31.5 ±15 Hz, very close to the

expected ideal value.

The heteronuclear coupling values as determined by the HETIE experiment actu-

ally agree quite well with the ’known structure’ given the uncertainties in the interpretation

of ferrocene diffraction studies. Thus far we have made only a single study, but with ad-

ditional refinement of the HETIE sequence, we anticipate this method may yield valuable

structural insight into solid samples.
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Chapter 8

Conclusion

8.1 Oriented Systems

The work described in Chapters 3 and 4 represents an initial attempt at developing

an area of research that holds much promise for yielding structural information in interesting

systems. The 2D SAS correlations presented facilitate the assignment and resolution of

dipolar couplings in complex spin systems. With this method, the larger goal of determining

a complete structure is much more tractable.

The systems studied in Chapters 3 and 4 are relatively simple; however, in principle

the methods can be applied to very complex spin systems such as proteins or nucleic acids.

In combination with the numerous existing liquid state assignment methods, the limitations

of these methods are no different than what is currently possible in liquid state structure

determinations, and it is hoped that they will be applied to more interesting systems in the

near future.
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8.2 Solid State

8.2.1 Structure from CSA

Not unlike the methodology development in oriented systems, the solid state work

presented is also in the early stages of development. The structure from CSA methods will

continue to develop as ab initio computational methods improve providing better correlation

with the experimental data. The availability of faster computers now makes computing more

accurate shielding surfaces possible which only a few years ago would have been intractable.

In the next year or two, it is expected that a new version of the shielding surfaces utilized

in this paper will be updated with more accurate results. This method probably will

be routinely utilized once these new surfaces are available due to the availability of CSA

information in both solids and solutions.

8.2.2 Isotropic Dipolar Spectra

Of the variety of methods presented in this thesis for determining structure, the

HOMIE and HETIE isotropic dipolar spectra experiments are the most novel. The appli-

cation of these methods has been very limited due to the recent timing of the experiments.

Actually, the experiments had to be halted in order to allow for the writing of this thesis.

This method has great potential for providing unique information in the solid state in a

form (isotropic) which is not readily available by other methods. Further demonstration

of the abilities of the HETIE method is planned in a variety of samples with more diverse

structures. If the method is further proven, it could facilitate for more accurate structure

determinations in solids.
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8.3 NMR Crystallography

None of the methods described in this thesis alone would constitute the entirety

of a NMR crystallography method. A likely strategy for structure determination would be

similar to what is performed in liquid state NMR where a sequence of different experimental

methods are applied; each of these methods reveal different pieces of information until an

appropriate structure is determined. With some developmental work applied to each of

these methods, perhaps a complete structure determination methodology could be designed

eventually. Until then, the developments continue.
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Appendix A

Appendix

A.1 Irreducible Tensor Representations of Spin Interactions

As mentioned briefly in Chapter 2 it is sometimes more convenient to write spin

interactions in spherical tensor form instead of the more familiar and experimentally relevant

cartesian form.

The nine matrix elements of a cartesian second rank tensor Tij (i,j=x,y,z) can be

represented by:

a scalar

T0 =
1
3
Tr(Tij) =

1
3

∑
i

Tii (A.1)

an antisymmetric first rank tensor

T1 : T
′
ij =

1
2
(Tij − Tji) (A.2)

with three components and zero trace, and into a traceless second rank tensor which is



A.1. IRREDUCIBLE TENSOR REPRESENTATIONS OF SPIN
INTERACTIONS 173

symmetric

T2 : T
′′
ij =

1
2
(Tij + Tji)−

1
3
Tr(Tij) (A.3)

with five components. Now the sum of the three irreducible tensor is

Tij =
1
3
Tr(Tij) + T

′
ij + T

′′
ij (A.4)

The three components, scalar, antisymmetric, and symmetric, all transform in the same

fashion as spherical harmonics of order zero, one and two, respectively.

Frame transformation are very common when dealing with spin interactions and

it is often very useful to represent this utilizing the second rank spherical tensors . The

tensor Tl of rank l with 2l+ 1 components Tlm transforms into the new coordinate system

(primed) according to the irreducible representation Dl of the rotation group[96]

T
′
lm = R(αβγ)TlmR−1(αβγ) =

+l∑
p=−l

TlpD
l
pm(αβγ). (A.5)

Using spherical unit vectors

e10 = ez; e1±1 = ∓(1/
√

2)(ex ± iey) (A.6)

the components of the first rank irreducible tensors T1m in cartesian components is

T1m = e1m −T = e1m · (exTx + eyTy + ezTz) (A.7)



A.2. SIMULATION PROGRAMS 174

or

T10 = Tz;T1±1 = ∓(1/
√

2)(Tx ± iTy) (A.8)

In a similar fashion, the second rank irreducible spherical tensors in terms of the cartesian

tensor are[3]

T00 = − 1√
3
[Txx + Tyy + Tzz]

T10 = − i√
2
[Txy − Tyx]

T1±1 = −1
2
[Tzx − Txz ∓ i(Tzy − Tyz)]

T20 =
1√
6
[3Tzz − (Txx + Tyy + Tzz)]

T2±1 = ∓1
2
[Txz + Tzx ± i(Tyz + Tzy)]

T2±2 =
1
2
[Txx − Tyy ± i(Txy + Tyx)]. (A.9)

For second rank cartesian tensors which are symmetric and traceless only the second rank ir-

reducible spherical tensor is nonzero, which is the case for dipolar coupling and quadrupolar

coupling.

A.2 Simulation Programs

Listing A.1: Simpson simulation input file for HETIE pathways 1-4
c l u s t e r {
waugh
noether
}
sp in sy s {
channe ls 13C 1H

nuc l e i 13C 1H 1H
d ipo l e 1 2 −13425 0 0 0
d ipo l e 1 3 −1458 0 0 0
d ipo l e 2 3 −1000 0 0 0

}

par {
variable ndet 3
method d i r e c t
gamma angles 40
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s p i n r a t e 15000 . 0
r o t o r ang l e 73 .92
variable h1r f s p i n r a t e∗7 . 5
variable hevor f s p i n r a t e∗27 . 0 /4 . 0
variable hde t r f s p i n r a t e∗15 . 0 /2 . 0
sw sp i n r a t e /8 . 0
c r y s t a l f i l e rep678
np 32
s t a r t o p e r a t o r Inz
de t e c t ope r a t o r I2m + I3m
verbose 1101
u s e c l u s t e r 1
c l u s t e r p o r t 3265
variable ph hdet 0

}

proc pulseq {} {
global par
maxdt 1 . 0

### S t a r t H1 ###
set t90 [ expr 0 .25e6 /$par ( h1r f ) ]

set phi [ expr 0+$par ( ph h1 ) ]
for { set i 0} { $ i < 5} { incr i 1} {

foreach phi2 {180 270} {
pul se $t90 0 0 $par ( h1r f ) [ expr 0+$phi2+$phi ]
pu l s e $t90 0 0 $par ( h1r f ) [ expr 90+$phi2+$phi ]
pu l s e $t90 0 0 $par ( h1r f ) [ expr 0+$phi2+$phi ]

pu l s e $t90 0 0 $par ( h1r f ) [ expr 90+$phi2+180+$phi ]
pu l s e $t90 0 0 $par ( h1r f ) [ expr 0+$phi2+180+$phi ]
pu l s e $t90 0 0 $par ( h1r f ) [ expr 90+$phi2+180+$phi ]

}
}

s t o r e 1
r e s e t

set t90 [ expr 0 .25e6 /$par ( h1r f ) ]
set phi [ expr 180+$par ( ph h1 ) ]

for { set i 0} { $ i < 5} { incr i 1} {
foreach phi2 {180 270} {

pul se $t90 0 0 $par ( h1r f ) [ expr 0+$phi2+$phi ]
pu l s e $t90 0 0 $par ( h1r f ) [ expr 90+$phi2+$phi ]
pu l s e $t90 0 0 $par ( h1r f ) [ expr 0+$phi2+$phi ]

pu l s e $t90 0 0 $par ( h1r f ) [ expr 90+$phi2+180+$phi ]
pu l s e $t90 0 0 $par ( h1r f ) [ expr 0+$phi2+180+$phi ]
pu l s e $t90 0 0 $par ( h1r f ) [ expr 90+$phi2+180+$phi ]

}
}

s t o r e 2
r e s e t
### END H1 ###

### S t a r t Hevo ###
set phi [ expr 0 ]

set t90 [ expr 0 .25e6 /$par ( hevor f ) ]
for { set i 0} { $ i < 9} { incr i 1} {

set phi2 [ expr 45+40]
pu l se $t90 0 0 $par ( hevor f ) [ expr 0+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hevor f ) [ expr 90+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hevor f ) [ expr 0+$phi2+$phi ]

set phi2 [ expr 45+140]
pu l se $t90 0 0 $par ( hevor f ) [ expr 90+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hevor f ) [ expr 0+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hevor f ) [ expr 90+$phi2+$phi ]

}
s t o r e 3
r e s e t

set phi [ expr 180 ]
set t90 [ expr 0 .25e6 /$par ( hevor f ) ]
for { set i 0} { $ i < 9} { incr i 1} {

set phi2 [ expr 45+40]
pu l se $t90 0 0 $par ( hevor f ) [ expr 0+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hevor f ) [ expr 90+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hevor f ) [ expr 0+$phi2+$phi ]

set phi2 [ expr 45+140]
pu l se $t90 0 0 $par ( hevor f ) [ expr 90+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hevor f ) [ expr 0+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hevor f ) [ expr 90+$phi2+$phi ]

}
s t o r e 4
r e s e t
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#Hdet

set t90 [ expr 0 .25e6 /$par ( hde t r f ) ]
set phi [ expr 0+$par ( ph hdet ) ]

for { set i 0} { $ i < 5} { incr i 1} {
foreach phi2 {0 90} {

pul se $t90 0 0 $par ( hde t r f ) [ expr 0+18+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hde t r f ) [ expr 90+18+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hde t r f ) [ expr 0+18+$phi2+$phi ]

pu l s e $t90 0 0 $par ( hde t r f ) [ expr 90+18+144+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hde t r f ) [ expr 0+18+144+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hde t r f ) [ expr 90+18+144+$phi2+$phi ]

}
}

s t o r e 5
r e s e t

set t90 [ expr 0 .25e6 /$par ( hde t r f ) ]
set phi [ expr 180+$par ( ph hdet ) ]

for { set i 0} { $ i < 5} { incr i 1} {
foreach phi2 {0 90} {

pul se $t90 0 0 $par ( hde t r f ) [ expr 0+18+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hde t r f ) [ expr 90+18+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hde t r f ) [ expr 0+18+$phi2+$phi ]

pu l s e $t90 0 0 $par ( hde t r f ) [ expr 90+18+144+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hde t r f ) [ expr 0+18+144+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hde t r f ) [ expr 90+18+144+$phi2+$phi ]

}
}

s t o r e 6
r e s e t

### END Hdet ###

acq
for { set i 1} { $ i < $par (np )} { incr i } {

r e s e t
for { set j 1} { $ j <= $i } { incr j } {

i f [ expr $ j%2 == 1 ] {
prop 1
pu l s e i d 2 250000 0 0 0
prop 2

} else {
prop 2
pu l s e i d 2 250000 0 0 0

prop 1
}

}
for { set j $ i } { $ j > 0} { incr j −1} {

set k [ expr $ i %2]
i f [ expr $ j%2 == 1 ] {

prop 4
pu l s e i d 2 250000 0 0 0

prop 3
} else {

prop 3
pu l s e i d 2 250000 0 0 0

prop 4
}

}
i f [ expr $par ( hdet1 ) == 0 ] {

for { set j 1} { $ j <= $par ( ndet )} { incr j } {
i f [ expr $ j%2 == 1 ] {

prop 6
pu l s e i d 2 250000 0 0 0
prop 5

} else {
prop 5
pu l s e i d 2 250000 0 0 0
prop 6

}
}

} else {
for { set j 1} { $ j <= $par ( ndet )} { incr j } {

i f [ expr $ j%2 == 1 ] {
prop 5
pu l s e i d 2 250000 0 0 0
prop 6

} else {
prop 6
pu l s e i d 2 250000 0 0 0
prop 5

}
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}
}
for { set j $par ( ndet )} { $ j > 0} { incr j −1} {

i f [ expr $ j%2 == 1 ] {
prop 6
pu l s e i d 2 250000 0 0 0
prop 5

} else {
prop 5
pu l s e i d 2 250000 0 0 0
prop 6

}
}

# ACQUIRE PULSE
pu l s e i d 1 0 0 250000 0
acq

}
}

proc main {} {
global par

set k $par ( ndet )
set par ( ph h1 ) 0
set par ( hdet1 ) 0

for { set j 1} { $ j <= 4} { incr j 1} {
i f [ expr $ j%2 == 0 ] {

set par ( hdet1 ) 180
}
i f [ expr $ j > 2 ] {

set par ( ph h1 ) 180
}

set f [ f s impson ]
f s ave $ f $par (name) $ j . d . $ k . f i d
f z e r o f i l l $ f 64
faddlb $ f 10 0
f f t $ f
fphase $ f −rp 90
f save $ f $par (name) $ j . d . $ k . s p e
}

}

Listing A.2: Simpson simulation input file for HETIE pathways 5-8
c l u s t e r {
waugh
noether
}
sp in sy s {
channe ls 13C 1H

nuc l e i 13C 1H 1H
d ipo l e 1 2 −13425 0 0 0
d ipo l e 1 3 −1458 0 0 0
d ipo l e 2 3 −1000 0 0 0

}

par {
variable ndet 3
method d i r e c t
gamma angles 40
s p i n r a t e 15000 . 0
r o t o r ang l e 73 .92
variable h1r f s p i n r a t e∗7 . 5
variable hevor f s p i n r a t e∗27 . 0 /4 . 0
variable hde t r f s p i n r a t e∗15 . 0 /2 . 0
sw sp i n r a t e /8 . 0
c r y s t a l f i l e rep678
np 32
s t a r t o p e r a t o r Inz
de t e c t ope r a t o r I2m + I3m
verbose 1101
u s e c l u s t e r 1
c l u s t e r p o r t 3265
variable ph hdet 0

}

proc pulseq {} {
global par
maxdt 1 . 0

### S t a r t H1 ###
set t90 [ expr 0 .25e6 /$par ( h1r f ) ]

set phi [ expr 0+$par ( ph h1 ) ]
for { set i 0} { $ i < 5} { incr i 1} {
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foreach phi2 {180 270} {
pul se $t90 0 0 $par ( h1r f ) [ expr 0+$phi2+$phi ]
pu l s e $t90 0 0 $par ( h1r f ) [ expr 90+$phi2+$phi ]
pu l s e $t90 0 0 $par ( h1r f ) [ expr 0+$phi2+$phi ]

pu l s e $t90 0 0 $par ( h1r f ) [ expr 90+$phi2+180+$phi ]
pu l s e $t90 0 0 $par ( h1r f ) [ expr 0+$phi2+180+$phi ]
pu l s e $t90 0 0 $par ( h1r f ) [ expr 90+$phi2+180+$phi ]

}
}

s t o r e 1
r e s e t

set t90 [ expr 0 .25e6 /$par ( h1r f ) ]
set phi [ expr 180+$par ( ph h1 ) ]

for { set i 0} { $ i < 5} { incr i 1} {
foreach phi2 {180 270} {

pul se $t90 0 0 $par ( h1r f ) [ expr 0+$phi2+$phi ]
pu l s e $t90 0 0 $par ( h1r f ) [ expr 90+$phi2+$phi ]
pu l s e $t90 0 0 $par ( h1r f ) [ expr 0+$phi2+$phi ]

pu l s e $t90 0 0 $par ( h1r f ) [ expr 90+$phi2+180+$phi ]
pu l s e $t90 0 0 $par ( h1r f ) [ expr 0+$phi2+180+$phi ]
pu l s e $t90 0 0 $par ( h1r f ) [ expr 90+$phi2+180+$phi ]

}
}

s t o r e 2
r e s e t
### END H1 ###

### S t a r t Hevo ###
set phi [ expr 0 ]

set t90 [ expr 0 .25e6 /$par ( hevor f ) ]
for { set i 0} { $ i < 9} { incr i 1} {

set phi2 [ expr 45+40]
pu l se $t90 0 0 $par ( hevor f ) [ expr 0+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hevor f ) [ expr 90+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hevor f ) [ expr 0+$phi2+$phi ]

set phi2 [ expr 45+140]
pu l se $t90 0 0 $par ( hevor f ) [ expr 90+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hevor f ) [ expr 0+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hevor f ) [ expr 90+$phi2+$phi ]

}
s t o r e 3
r e s e t

set phi [ expr 180 ]
set t90 [ expr 0 .25e6 /$par ( hevor f ) ]
for { set i 0} { $ i < 9} { incr i 1} {

set phi2 [ expr 45+40]
pu l se $t90 0 0 $par ( hevor f ) [ expr 0+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hevor f ) [ expr 90+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hevor f ) [ expr 0+$phi2+$phi ]

set phi2 [ expr 45+140]
pu l se $t90 0 0 $par ( hevor f ) [ expr 90+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hevor f ) [ expr 0+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hevor f ) [ expr 90+$phi2+$phi ]

}
s t o r e 4
r e s e t

#Hdet

set t90 [ expr 0 .25e6 /$par ( hde t r f ) ]
set phi [ expr 0+$par ( ph hdet ) ]

for { set i 0} { $ i < 5} { incr i 1} {
foreach phi2 {0 90} {

pul se $t90 0 0 $par ( hde t r f ) [ expr 0+18+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hde t r f ) [ expr 90+18+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hde t r f ) [ expr 0+18+$phi2+$phi ]

pu l s e $t90 0 0 $par ( hde t r f ) [ expr 90+18+144+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hde t r f ) [ expr 0+18+144+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hde t r f ) [ expr 90+18+144+$phi2+$phi ]

}
}

s t o r e 5
r e s e t

set t90 [ expr 0 .25e6 /$par ( hde t r f ) ]
set phi [ expr 180+$par ( ph hdet ) ]

for { set i 0} { $ i < 5} { incr i 1} {
foreach phi2 {0 90} {

pul se $t90 0 0 $par ( hde t r f ) [ expr 0+18+$phi2+$phi ]
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pul se $t90 0 0 $par ( hde t r f ) [ expr 90+18+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hde t r f ) [ expr 0+18+$phi2+$phi ]

pu l s e $t90 0 0 $par ( hde t r f ) [ expr 90+18+144+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hde t r f ) [ expr 0+18+144+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hde t r f ) [ expr 90+18+144+$phi2+$phi ]

}
}

s t o r e 6
r e s e t

### END Hdet ###
## Hdet2 ##

set t90 [ expr 0 .25e6 /$par ( hde t r f ) ]
set phi [ expr 0 ]

for { set i 0} { $ i < 5} { incr i 1} {
foreach phi2 {0 90} {

pul se $t90 0 0 $par ( hde t r f ) [ expr 90−18+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hde t r f ) [ expr 0−18+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hde t r f ) [ expr 90−18+$phi2+$phi ]

pu l s e $t90 0 0 $par ( hde t r f ) [ expr 0+198+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hde t r f ) [ expr 90+198+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hde t r f ) [ expr 0+198+$phi2+$phi ]

}
}

s t o r e 7
r e s e t

set t90 [ expr 0 .25e6 /$par ( hde t r f ) ]
set phi [ expr 180 ]

for { set i 0} { $ i < 5} { incr i 1} {
foreach phi2 {0 90} {

pul se $t90 0 0 $par ( hde t r f ) [ expr 90−18+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hde t r f ) [ expr 0−18+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hde t r f ) [ expr 90−18+$phi2+$phi ]

pu l s e $t90 0 0 $par ( hde t r f ) [ expr 0+198+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hde t r f ) [ expr 90+198+$phi2+$phi ]
pu l s e $t90 0 0 $par ( hde t r f ) [ expr 0+198+$phi2+$phi ]

}
}

s t o r e 8
r e s e t
### END Hdet ###

acq
for { set i 1} { $ i < $par (np )} { incr i } {

r e s e t
for { set j 1} { $ j <= $i } { incr j } {

i f [ expr $ j%2 == 1 ] {
prop 1
pu l s e i d 2 250000 0 0 0
prop 2

} else {
prop 2
pu l s e i d 2 250000 0 0 0

prop 1
}

}
for { set j $ i } { $ j > 0} { incr j −1} {

set k [ expr $ i %2]
i f [ expr $ j%2 == 1 ] {

prop 4
pu l s e i d 2 250000 0 0 0

prop 3
} else {

prop 3
pu l s e i d 2 250000 0 0 0

prop 4
}

}
i f [ expr $par ( hdet1 ) == 0 ] {

for { set j 1} { $ j <= $par ( ndet )} { incr j } {
i f [ expr $ j%2 == 1 ] {

prop 6
pu l s e i d 2 250000 0 0 0
prop 5

} else {
prop 5
pu l s e i d 2 250000 0 0 0
prop 6

}
}



A.3. PULSE SEQUENCES 180

} else {
for { set j 1} { $ j <= $par ( ndet )} { incr j } {

i f [ expr $ j%2 == 1 ] {
prop 5
pu l s e i d 2 250000 0 0 0
prop 6

} else {
prop 6
pu l s e i d 2 250000 0 0 0
prop 5

}
}

}
for { set j $par ( ndet )} { $ j > 0} { incr j −1} {

i f [ expr $ j%2 == 1 ] {
prop 8
pu l s e i d 2 250000 0 0 0
prop 7

} else {
prop 7
pu l s e i d 2 250000 0 0 0
prop 8

}
}

# ACQUIRE PULSE
pu l s e i d 1 0 0 250000 0
acq

}
}

proc main {} {
global par

set k $par ( ndet )
set par ( ph h1 ) 0
set par ( hdet1 ) 0

for { set j 1} { $ j <= 4} { incr j 1} {
i f [ expr $ j%2 == 0 ] {

set par ( hdet1 ) 180
}
i f [ expr $ j > 2 ] {

set par ( ph h1 ) 180
}
set nk [ expr $ j +4]

set f [ f s impson ]
f s ave $ f $par (name) $ n k . d . $ k . f i d
f z e r o f i l l $ f 64
faddlb $ f 10 0
f f t $ f
fphase $ f −rp 90
f save $ f $par (name) $nk . d . $k . s p e
}

}

A.3 Pulse Sequences

Listing A.3: Infinity+ pulse program for HETIE pathways 1-4
name ” i s oh e t HETIE” ;
t i t l e ” i s oh e t HETIE” ;

! COMPILED WITH OPTIMIZATION ON
! $Header : / usr2 / use r s /applab/CFR/ppg/cp postC7 2D . s , v 1 . 1 1998/11/05 22 : 4 4 : 2 5 applab Exp $
! I n f i n i t yP l u s Compatible

NMRchnls RF : ch1 ch2 ; NMRacq ;

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Def ine v a r i a b l e s in . data s e c t i on
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

. data

. long hd1=0;

. long count3d=0;

. long path =0 ; ! Number o f Hdetect ions to opt imize s i g n a l

. long extern nhdet =1 ; ! Number o f Hdetect ions to opt imize s i g n a l

. time extern au to f i x pw90Hevo = 1.0 us ;

. time extern au to f i x pw90Hdet = 1.0 us ;

. time au to f i x PW90Hevo ”pw360X∗.25 − TPM1” = 2.0 us ;

. time au to f i x PW90Hdet ”pw360X∗.25 − TPM1” = 2.0 us ;

. time au to f i x PW90H ”pw360X∗.25 − TPM1” = 2.0 us ;

. time au to f i x xdelay = 100 us ; ! Delay to cente r the p i pu l se on the S sp in

. time au to f i x evodelay = 100 us ; ! Delay to cente r the p i pu l se on the S sp in for Hevo
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. time au to f i x detde lay = 100 us ; ! Delay to cente r the p i pu l se on the S sp in for Hevo

. f r e q extern rspeed ;

. long k , j , x , States F lag , h a l f a l ;

. long ncyc2d ; ! 2D counter

. time extern al2d = 50ms ;

. long i = 1 ;

. ampl extern au to f i x aH1=0.01;

. ampl extern au to f i x aHevo=0.01;

. ampl au to f i x aHdet =0 . 0 1 ; !HDET

. phase l i s t X180 [ ]=0 , 0 ;

. phase au to f i x l i s t H1 [ 2 4 0 ] ; ! empty auto f i x ed l i s t to accept des ignated phases at runtime

. phase au to f i x l i s t Hevo [ 2 1 6 ] ; ! empty auto f i x ed l i s t to accept des ignated phases at runtime

. phase au to f i x l i s t Hdet1 [ 2 4 0 ] ; ! empty auto f i x ed l i s t to accept des ignated phases at runtime

. phase au to f i x l i s t Hdet2 [ 2 4 0 ] ; ! empty auto f i x ed l i s t to accept des ignated phases at runtime

. phase l i s t last [ ]=0 , 1 80 , 9 0 , 2 70 ; ! phase for pul se be f o r e Acq

. phase l a s t p ;

. long extern l i s t abph [ ] = 0 , 2 , 1 , 3 ; ! Note odd − even = path1 − path2

inc lude ” . / phases . inc ” ;
i nc lude ” . . / i n c l ude s /STANDARD PARAMS” ;
inc lude ” . . / i n c l ude s /THREE D. inc ” ;

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! update Sp ins i ght with c a l c u l a t i o n s .
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

. update ” rb=1.30∗sw” ;

. update ”aqtm=(dw∗ a l ) ” ;

. update ”dw2 = (2.0∗60.0∗pw90H)+(2.0∗54.0∗pw90Hevo ) ” ;

. update ” al2d = AL2∗(dw2) ” ;

. update ” rspeed = (1 .0/(7500 .0∗4 .00∗pw90H)+1.0/(6750 .0∗4 .0∗pw90Hevo ) ) / 2 . 0 ” ;

. update ”extm = (pw90H+(AL2∗dw2)+ad+rd+aqtm+pd) ” ;

. update ” txduty1=(pw90H+(AL2∗dw2)+ad+rd+aqtm)/ extm” ;

. update ” time1d = (na+dp)∗ extm ∗2 .0/60 .0 ” ;

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Executed once at Star t o f Experiment
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

. program

datax f e r= a l2 ∗ a l3 ;
dpc = dp ;
PW90H = pw90H ;
PW90Hevo = pw90Hevo ;
PW90Hdet = PW90H;
aHdet=aH1 ;
xdelay=pw90H∗60.0−pw180X/2 . 0 ;
evodelay=pw90Hevo∗54.0−pw180X/2 . 0 ;
detde lay=xdelay ;
path=1;
count3d=1;

. s t a r t

!LOOP3D
!{
ncyc2d=1;

loop2D
{

abph = abph . s t a r t ;
last = last . s t a r t ;
hd1 =1 ; ! re− i n i t i a l i z e counter to dec ide which o f the 4 to apply

loop1D
{

c a l l mainseq ;
hd1++;

}
i f ( count3d%AL2 == 0) {

path++;
ncyc2d=0;

}
count3d++;
ncyc2d++;
}

! path++;
!}

. end

!============================================================!
mainseq :
i f ( hd1 > 4) { hd1=1; }
i f ( hd1 == 1) {

aqph=@abph++;
l a s t p=@last++;
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}
! Pi phase s h i f t both H1 and Hevo to g ive a f i l t e r
i f ( hd1%2 == 1) {
i f ( path < 3) {
H1 = H1 0110 . s t a r t ;
Hevo = Hevo 1001 . s t a r t ;
i f ( ncyc2d%2 == 0) { Hevo = Hevo 0110 . s t a r t ; }

} else {
H1 = H1 1001 . s t a r t ;
Hevo = Hevo 0110 . s t a r t ;
i f ( ncyc2d%2 == 0) { Hevo = Hevo 1001 . s t a r t ; }

}
}
! Pi phase s h i f t o f H1 and Hevo for f i l t e r
i f ( hd1%2 == 0) {
i f ( path > 2) {
H1 = H1 0110 . s t a r t ;
Hevo = Hevo 1001 . s t a r t ;
i f ( ncyc2d%2 == 0) { Hevo = Hevo 0110 . s t a r t ; }

} else {
H1 = H1 1001 . s t a r t ;
Hevo = Hevo 0110 . s t a r t ;
i f ( ncyc2d%2 == 0) { Hevo = Hevo 1001 . s t a r t ; }

}
}

! ! A l te rnate Hdets+Pi for hd1>2
i f ( hd1 > 2) {
! ! A l te rnate Hdet1
i f ( path%2 == 0) {
Hdet1 = Hdet 0110 . s t a r t ; ! odd po int s phase=0

} else {
Hdet1 = Hdet 1001 . s t a r t ; ! even po int s phase=180

}
! Match Hdet2 with Hdet1
Hdet2 = Hdet 0110 . s t a r t ;
i f ( nhdet%2 == 0) { Hdet2 = Hdet 1001 . s t a r t ; }

} else {
! ! A l te rnate Hdet1
i f ( path%2 == 0) {

Hdet1 = Hdet 1001 . s t a r t ; ! even po int s phase=180
} else {

Hdet1 = Hdet 0110 . s t a r t ; ! odd po int s phase=0
}
! Match Hdet2 with Hdet1
Hdet2 = Hdet 1001 . s t a r t ;
i f ( nhdet%2 == 0) { Hdet2 = Hdet 0110 . s t a r t ; }

}
! ! ! END Logic . .

out time (10u ) ;
Async ;
ch++ ch1 ;
out time (10u ) ;
out time (10u) ch1 :SC( scH ) ;
out time (10u) ch1 : OUTA aH1 ;

! Apply H1 01 or 10 for 4 r o t o r s ncyc2d times
for ( j =0 , j < ncyc2d , j++)

{
do (120)

{
! out PM1 ch1 :TG|OUTAP aH1 |@H1++;

out PW90H ch1 :TG|OUTAP aH1 |@H1++;
}

}
! Apply Hevo 01 or 10 for 4 r o t o r s ncyc2d times
for ( j =0 , j < ncyc2d , j++)

{
do (108)

{
! out PM1 ch1 :TG|OUTAP aHevo |@Hevo++;

out PW90Hevo ch1 :TG|OUTAP aHevo |@Hevo++;
}

}

! Apply Hdet1 01 or 10 for 4 r o t o r s nhdet t imes
for ( j =0 , j < nhdet , j ++) {

do (120)
{

! out PM1 ch1 :TG|OUTAP aHdet |@Hdet1++;
out PW90Hdet ch1 :TG|OUTAP aHdet |@Hdet1++;

}
}
! Apply Hdet2 01 or 10 for 4 r o t o r s nhdet t imes
for ( j =0 , j < nhdet , j ++) {

do (120)
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{
! out PM1 ch1 :TG|OUTAP aHdet |@Hdet2++;

out PW90Hdet ch1 :TG|OUTAP aHdet |@Hdet2++;
}

}
! out PM1 ch1 :TG|P( l a s t p ) ;
out PW90Hdet ch1 :TG|P( l a s t p ) ;
out rd ch1 :TB|P(p ) ;
out ad ch1 :RE|TB;
outAQ dw ch1 :RE|TB, a l ;

Sync ;
ch−−;

ch++ ch2 ;
out time (10u ) ;
out time (10u) ch2 :SC( scX ) ;
out time (10u) ch2 :AP(aX ,@X180) ;

for ( k=0 , k < ncyc2d , k++)
{

out xdelay ;
out pw180X ch2 :TG;
out xdelay ;
}

for ( k=0 , k < ncyc2d , k++)
{

out evodelay ;
out pw180X ch2 :TG;
out evodelay ;
}

for ( k=0 , k < nhdet , k++) {
out detde lay ;

out pw180X ch2 :TG;
out detde lay ;

}
for ( k=0 , k < nhdet , k++) {

out detde lay ;
out pw180X ch2 :TG;
out detde lay ;

}
waitS ;

ch−−;

scan pd ;
return ;

Listing A.4: Infinity+ pulse program phases for HETIE pathways 1-4
! i h e t p12 phases
. phase au to f i x l i s t H1 0110 [ ]= 180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,

180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ;

. phase au to f i x l i s t H1 1001 [ ]= 0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
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180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ;

. phase au to f i x l i s t Hevo 1001 [ ]=
265 ,355 ,265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 ,
265 ,355 ,265 , 95 , 5 , 95 ,
265 ,355 ,265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 ,
85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 ,
85 ,175 , 85 ,275 ,185 ,275 ,
85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 ,
85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 ,
85 ,175 , 85 ,275 ,185 ,275 ,
85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 ,

265 ,355 ,265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 ,
265 ,355 ,265 , 95 , 5 , 95 ,
265 ,355 ,265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 9 5 ;

. phase au to f i x l i s t Hevo 0110 [ ]=
85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 ,
85 ,175 , 85 ,275 ,185 ,275 ,
85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 ,

265 ,355 ,265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 ,
265 ,355 ,265 , 95 , 5 , 95 ,
265 ,355 ,265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 ,
265 ,355 ,265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 ,
265 ,355 ,265 , 95 , 5 , 95 ,
265 ,355 ,265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 ,
85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 ,
85 ,175 , 85 ,275 ,185 ,275 ,
85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 ;

. phase au to f i x l i s t Hdet 0110 [ ]= 18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 ,
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 ,
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 ,
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 ,
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 , ! 0
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 ,
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 ,
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 ,
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 ,
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 , ! Pi
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 ,
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 ,
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 ,
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 ,
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 , ! Pi
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 ,
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 ,
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 ,
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 ,
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 ; ! 0

. phase au to f i x l i s t Hdet 1001 [ ]= 198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 ,
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 ,
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 ,
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 ,
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 , ! Pi
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 ,
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 ,
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 ,
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 ,
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 , ! 0
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 ,
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 ,
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 ,
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 ,
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 , ! 0

198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 ,
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 ,
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 ,
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 ,
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 ; ! Pi

Listing A.5: Infinity+ pulse program for HETIE pathways 5-8
name ” i s oh e t HETIE” ;
t i t l e ” i s oh e t HETIE” ;

! COMPILED WITH OPTIMIZATION ON
! $Header : / usr2 / use r s /applab/CFR/ppg/cp postC7 2D . s , v 1 . 1 1998/11/05 22 : 4 4 : 2 5 applab Exp $
! I n f i n i t yP l u s Compatible
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NMRchnls RF : ch1 ch2 ; NMRacq ;

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Def ine v a r i a b l e s in . data s e c t i on
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

. data

. long hd1=0;

. long count3d=0;

. long path =0 ; ! set the pathway

. long extern nhdet =1 ; ! Number o f Hdetect ions to opt imize s i g n a l

. time extern au to f i x pw90Hevo = 1.0 us ;

. time au to f i x PW90Hevo ”pw360X∗.25 − TPM1” = 2.0 us ;

. time au to f i x PW90Hdet ”pw360X∗.25 − TPM1” = 2.0 us ;

. time au to f i x PW90H ”pw360X∗.25 − TPM1” = 2.0 us ;

. time au to f i x xdelay = 100 us ; ! Delay to cente r the p i pu l se on the S sp in

. time au to f i x evodelay = 100 us ; ! Delay to cente r the p i pu l se on the S sp in for Hevo

. time au to f i x detde lay = 100 us ; ! Delay to cente r the p i pu l se on the S sp in for Hevo

. f r e q extern rspeed ;

. long k , j , x , States F lag , h a l f a l ;

. long ncyc2d ; ! 2D counter

. time extern al2d = 50ms ;

. long i = 1 ;

. ampl extern au to f i x aH1=0.01;

. ampl extern au to f i x aHevo=0.01;

. ampl au to f i x aHdet =0.01;

. phase l i s t X180 [ ]=0 , 0 ;

. phase au to f i x l i s t H1 [ 2 4 0 ] ; ! empty auto f i x ed l i s t to accept des ignated phases at runtime

. phase au to f i x l i s t Hevo [ 2 1 6 ] ; ! empty auto f i x ed l i s t to accept des ignated phases at runtime

. phase au to f i x l i s t Hdet1 [ 2 4 0 ] ; ! empty auto f i x ed l i s t to accept des ignated phases at runtime

. phase au to f i x l i s t Hdet2 [ 2 4 0 ] ; ! empty auto f i x ed l i s t to accept des ignated phases at runtime

. phase l i s t last [ ]=0 , 1 80 , 9 0 , 2 70 ; ! phase for pul se be f o r e Acq

. phase l a s t p ;

. long extern l i s t abph [ ] = 0 , 2 , 1 , 3 ; ! Note odd − even = path1 − path2

inc lude ” . / phases . inc ” ;
i nc lude ” . . / i n c l ude s /STANDARD PARAMS” ;
inc lude ” . . / i n c l ude s /THREE D. inc ” ;

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! update Sp ins i ght with c a l c u l a t i o n s .
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

. update ” rb=1.30∗sw” ;

. update ”aqtm=(dw∗ a l ) ” ;

. update ”dw2 = (2.0∗60.0∗pw90H)+(2.0∗54.0∗pw90Hevo ) ” ;

. update ” al2d = AL2∗(dw2) ” ;

. update ” rspeed = (1 .0/(7500 .0∗4 .00∗pw90H)+1.0/(6750 .0∗4 .0∗pw90Hevo ) ) / 2 . 0 ” ;

. update ”extm = (pw90H+(AL2∗dw2)+ad+rd+aqtm+pd) ” ;

. update ” txduty1=(pw90H+(AL2∗dw2)+ad+rd+aqtm)/ extm” ;

. update ” time1d = (na+dp)∗ extm ∗2 .0/60 .0 ” ;

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Executed once at Star t o f Experiment
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

. program

datax f e r = a l2 ∗ a l3 ;

dpc = dp ;
PW90H = pw90H ;
PW90Hevo = pw90Hevo ;
PW90Hdet = PW90H;
aHdet=aH1 ;
xdelay=pw90H∗60.0−pw180X/2 . 0 ;
evodelay=pw90Hevo∗54.0−pw180X/2 . 0 ;
detde lay=xdelay ;
path=5;
count3d=1;

. s t a r t
!LOOP3D
!{
ncyc2d=1;
loop2D

{
abph = abph . s t a r t ;

last = last . s t a r t ;
hd1 =1 ; ! re− i n i t i a l i z e counter to dec ide which o f the 4 to apply

loop1D
{

c a l l mainseq ;
hd1++;

}
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i f ( count3d%AL2 == 0) {
path++;
ncyc2d=0;

}
count3d++;
ncyc2d++;
}

! path++;
!}
. end

!==============================================!
mainseq :

i f ( hd1 > 4) { hd1=1; }
i f ( hd1 == 1) {

aqph=@abph++;
l a s t p=@last++;

}

! Set H1 and Hevo accord ing to path var
i f ( hd1%2 == 1) {
i f ( path < 7) {
H1 = H1 0110 . s t a r t ;
Hevo = Hevo 1001 . s t a r t ;
i f ( ncyc2d%2 == 0) { Hevo = Hevo 0110 . s t a r t ; }

} else {
H1 = H1 1001 . s t a r t ;
Hevo = Hevo 0110 . s t a r t ;
i f ( ncyc2d%2 == 0) { Hevo = Hevo 1001 . s t a r t ; }

}
}
! Pi phase s h i f t H1 and Hevo for f i l t e r
i f ( hd1%2 == 0) {
i f ( path > 6) {
H1 = H1 0110 . s t a r t ;
Hevo = Hevo 1001 . s t a r t ;
i f ( ncyc2d%2 == 0) { Hevo = Hevo 0110 . s t a r t ; }

} else {
H1 = H1 1001 . s t a r t ;
Hevo = Hevo 0110 . s t a r t ;
i f ( ncyc2d%2 == 0) { Hevo = Hevo 1001 . s t a r t ; }

}
}

i f ( hd1 > 2) {
! A l te rnate Hdet1
i f ( path%2 == 0) {
Hdet1 = Hdet 0110 . s t a r t ; ! odd po int s phase=0

} else {
Hdet1 = Hdet 1001 . s t a r t ; ! even po int s phase=180

}
! Match Hdet2 with Hdet1
Hdet2 = Hdetp 0110 . s t a r t ;
i f ( nhdet%2 == 0) { Hdet2 = Hdetp 1001 . s t a r t ; }

} else {
! A l te rnate Hdet1
i f ( path%2 == 0) {

Hdet1 = Hdet 1001 . s t a r t ; ! even po int s phase=180
} else {

Hdet1 = Hdet 0110 . s t a r t ; ! odd po int s phase=0
}

! Match Hdet2 with Hdet1
Hdet2 = Hdetp 1001 . s t a r t ;
i f ( nhdet%2 == 0) { Hdet2 = Hdetp 0110 . s t a r t ; }

}
! ! ! End Logic

out time (10u ) ;
Async ;
ch++ ch1 ;
out time (10u ) ;
out time (10u) ch1 :SC( scH ) ;
out time (10u) ch1 : OUTA aH1 ;

! Apply H1 01 or 10 for 4 r o t o r s ncyc2d times
for ( j =0 , j < ncyc2d , j++)

{
do (120)

{
! out PM1 ch1 :TG|OUTAP aH1 |@H1++;

out PW90H ch1 :TG|OUTAP aH1 |@H1++;
}

}
! Apply Hevo 01 or 10 for 4 r o t o r s ncyc2d times
for ( j =0 , j < ncyc2d , j++)

{
do (108)
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{
! out PM1 ch1 :TG|OUTAP aHevo |@Hevo++;

out PW90Hevo ch1 :TG|OUTAP aHevo |@Hevo++;
}

}

! Apply Hdet1 01 or 10 for 4 r o t o r s nhdet t imes
for ( j =0 , j < nhdet , j ++) {

do (120)
{

! out PM1 ch1 :TG|OUTAP aHdet |@Hdet1++;
out PW90Hdet ch1 :TG|OUTAP aHdet |@Hdet1++;

}
}
! Apply Hdet2 01 or 10 for 4 r o t o r s nhdet t imes
for ( j =0 , j < nhdet , j ++) {

do (120)
{

! out PM1 ch1 :TG|OUTAP aHdet |@Hdet2++;
out PW90Hdet ch1 :TG|OUTAP aHdet |@Hdet2++;

}
}
! out PM1 ch1 :TG|P( l a s t p ) ;
out PW90Hdet ch1 :TG|P( l a s t p ) ;
out rd ch1 :TB|P(p ) ;
out ad ch1 :RE|TB;
outAQ dw ch1 :RE|TB, a l ;

Sync ;
ch−−;

ch++ ch2 ;
out time (10u ) ;
out time (10u) ch2 :SC( scX ) ;
out time (10u) ch2 :AP(aX ,@X180) ;

for ( k=0 , k < ncyc2d , k++)
{

out xdelay ;
out pw180X ch2 :TG;
out xdelay ;
}

for ( k=0 , k < ncyc2d , k++)
{

out evodelay ;
out pw180X ch2 :TG;
out evodelay ;
}

for ( k=0 , k < nhdet , k++) {
out detde lay ;

out pw180X ch2 :TG;
out detde lay ;

}
for ( k=0 , k < nhdet , k++) {

out detde lay ;
out pw180X ch2 :TG;
out detde lay ;

}
waitS ;

ch−−;

scan pd ;
return ;

Listing A.6: Infinity+ pulse program phases for HETIE pathways 5-8
! i h e t p12 phases
. phase au to f i x l i s t H1 0110 [ ]= 180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,

180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
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180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ;

. phase au to f i x l i s t H1 1001 [ ]= 0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
180 ,270 ,180 ,90 ,0 ,90 ,270 ,0 ,270 ,180 ,90 ,180 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ,
0 ,90 ,0 ,270 ,180 ,270 ,90 ,180 ,90 ,0 ,270 ,0 ;

. phase au to f i x l i s t Hevo 1001 [ ]=
265 ,355 ,265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 ,
265 ,355 ,265 , 95 , 5 , 95 ,
265 ,355 ,265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 ,
85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 ,
85 ,175 , 85 ,275 ,185 ,275 ,
85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 ,
85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 ,
85 ,175 , 85 ,275 ,185 ,275 ,
85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 ,

265 ,355 ,265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 ,
265 ,355 ,265 , 95 , 5 , 95 ,
265 ,355 ,265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 9 5 ;

. phase au to f i x l i s t Hevo 0110 [ ]=
85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 ,
85 ,175 , 85 ,275 ,185 ,275 ,
85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 ,

265 ,355 ,265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 ,
265 ,355 ,265 , 95 , 5 , 95 ,
265 ,355 ,265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 ,
265 ,355 ,265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 ,
265 ,355 ,265 , 95 , 5 , 95 ,
265 ,355 ,265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 , 265 , 355 , 265 , 95 , 5 , 95 ,
85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 ,
85 ,175 , 85 ,275 ,185 ,275 ,
85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 , 85 ,175 , 85 ,275 ,185 ,275 ;

. phase au to f i x l i s t Hdet 0110 [ ]= 18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 ,
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 ,
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 ,
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 ,
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 , ! 0
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 ,
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 ,
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 ,
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 ,
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 , ! Pi
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 ,
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 ,
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 ,
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 ,
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 , ! Pi
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 ,
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 ,
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 ,
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 ,
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 ; ! 0

. phase au to f i x l i s t Hdet 1001 [ ]= 198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 ,
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 ,
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 ,
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 ,
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 , ! Pi
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 ,
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 ,
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 ,
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 ,
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 , ! 0
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 ,
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 ,
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 ,
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 ,
18 ,108 ,18 ,252 ,162 ,252 ,108 ,198 ,108 ,342 ,252 ,342 , ! 0
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198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 ,
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 ,
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 ,
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 ,
198 ,288 ,198 ,72 ,342 ,72 ,288 ,18 ,288 ,162 ,72 ,162 ; ! Pi

. phase au to f i x l i s t Hdetp 0110 [ ]= 72 ,342 ,72 ,198 ,288 ,198 ,162 ,72 ,162 ,288 ,18 ,288 ,
72 ,342 ,72 ,198 ,288 ,198 ,162 ,72 ,162 ,288 ,18 ,288 ,
72 ,342 ,72 ,198 ,288 ,198 ,162 ,72 ,162 ,288 ,18 ,288 ,
72 ,342 ,72 ,198 ,288 ,198 ,162 ,72 ,162 ,288 ,18 ,288 ,
72 ,342 ,72 ,198 ,288 ,198 ,162 ,72 ,162 ,288 ,18 ,288 , ! 0
252 ,162 ,252 ,18 ,108 ,18 ,342 ,252 ,342 ,108 ,198 ,108 ,
252 ,162 ,252 ,18 ,108 ,18 ,342 ,252 ,342 ,108 ,198 ,108 ,
252 ,162 ,252 ,18 ,108 ,18 ,342 ,252 ,342 ,108 ,198 ,108 ,
252 ,162 ,252 ,18 ,108 ,18 ,342 ,252 ,342 ,108 ,198 ,108 ,
252 ,162 ,252 ,18 ,108 ,18 ,342 ,252 ,342 ,108 ,198 ,108 , ! Pi
252 ,162 ,252 ,18 ,108 ,18 ,342 ,252 ,342 ,108 ,198 ,108 ,
252 ,162 ,252 ,18 ,108 ,18 ,342 ,252 ,342 ,108 ,198 ,108 ,
252 ,162 ,252 ,18 ,108 ,18 ,342 ,252 ,342 ,108 ,198 ,108 ,
252 ,162 ,252 ,18 ,108 ,18 ,342 ,252 ,342 ,108 ,198 ,108 ,
252 ,162 ,252 ,18 ,108 ,18 ,342 ,252 ,342 ,108 ,198 ,108 , ! Pi
72 ,342 ,72 ,198 ,288 ,198 ,162 ,72 ,162 ,288 ,18 ,288 ,
72 ,342 ,72 ,198 ,288 ,198 ,162 ,72 ,162 ,288 ,18 ,288 ,
72 ,342 ,72 ,198 ,288 ,198 ,162 ,72 ,162 ,288 ,18 ,288 ,
72 ,342 ,72 ,198 ,288 ,198 ,162 ,72 ,162 ,288 ,18 ,288 ,
72 ,342 ,72 ,198 ,288 ,198 ,162 ,72 ,162 ,288 ,18 ,288 ; ! 0

. phase au to f i x l i s t Hdetp 1001 [ ]= 252 ,162 ,252 ,18 ,108 ,18 ,342 ,252 ,342 ,108 ,198 ,108 ,
252 ,162 ,252 ,18 ,108 ,18 ,342 ,252 ,342 ,108 ,198 ,108 ,
252 ,162 ,252 ,18 ,108 ,18 ,342 ,252 ,342 ,108 ,198 ,108 ,
252 ,162 ,252 ,18 ,108 ,18 ,342 ,252 ,342 ,108 ,198 ,108 ,
252 ,162 ,252 ,18 ,108 ,18 ,342 ,252 ,342 ,108 ,198 ,108 , ! Pi
72 ,342 ,72 ,198 ,288 ,198 ,162 ,72 ,162 ,288 ,18 ,288 ,
72 ,342 ,72 ,198 ,288 ,198 ,162 ,72 ,162 ,288 ,18 ,288 ,
72 ,342 ,72 ,198 ,288 ,198 ,162 ,72 ,162 ,288 ,18 ,288 ,
72 ,342 ,72 ,198 ,288 ,198 ,162 ,72 ,162 ,288 ,18 ,288 ,
72 ,342 ,72 ,198 ,288 ,198 ,162 ,72 ,162 ,288 ,18 ,288 , ! 0
72 ,342 ,72 ,198 ,288 ,198 ,162 ,72 ,162 ,288 ,18 ,288 ,
72 ,342 ,72 ,198 ,288 ,198 ,162 ,72 ,162 ,288 ,18 ,288 ,
72 ,342 ,72 ,198 ,288 ,198 ,162 ,72 ,162 ,288 ,18 ,288 ,
72 ,342 ,72 ,198 ,288 ,198 ,162 ,72 ,162 ,288 ,18 ,288 ,
72 ,342 ,72 ,198 ,288 ,198 ,162 ,72 ,162 ,288 ,18 ,288 , ! 0
252 ,162 ,252 ,18 ,108 ,18 ,342 ,252 ,342 ,108 ,198 ,108 ,
252 ,162 ,252 ,18 ,108 ,18 ,342 ,252 ,342 ,108 ,198 ,108 ,
252 ,162 ,252 ,18 ,108 ,18 ,342 ,252 ,342 ,108 ,198 ,108 ,
252 ,162 ,252 ,18 ,108 ,18 ,342 ,252 ,342 ,108 ,198 ,108 ,
252 ,162 ,252 ,18 ,108 ,18 ,342 ,252 ,342 ,108 ,198 ,108 ; ! Pi

A.4 Processing Scripts

Listing A.7: Spinsight macro script for processing HETIE 3D dataset generated by the
sequences in Appendix A.3
bufa0 = query ”Enter name o f path1−4 3D bu f f e r ” −s ;
bufa = copy bufa0 ;
bufb0 = query ”Enter name o f path5−8 3D bu f f e r ” −s ;
bufb = copy bufb0 ;

view bufa −d2 0 . 0 0 . 1 5 ;

p14 = pro j bufa −m sum ;
d i s p14 ;

s e t s i z e p14 3 2 ;
d i s p14 ;

view bufb −d2 0 . 0 0 . 1 5 ;

p58 = pro j bufb −m sum ;
d i s p58 ;

s e t s i z e p58 3 2 ;

view p14 1 1 0 ;
p1s=ext ra c t p14 ;
d i s p1s ;

view p14 1 1 1 ;
p2s=ext ra c t p14 ;
d i s p2s ;

view p14 1 1 2 ;
p3s=ext ra c t p14 ;
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d i s p3s ;

view p14 1 1 3 ;
p4s=ext ra c t p14 ;
d i s p4s ;

view p58 1 1 0 ;
p5s=ext ra c t p58 ;
d i s p5s ;

view p58 1 1 1 ;
p6s=ext ra c t p58 ;
d i s p6s ;

view p58 1 1 2 ;
p7s=ext ra c t p58 ;
d i s p7s ;

view p58 1 1 3 ;
p8s=ext ra c t p58 ;
d i s p8s ;

Listing A.8: Spinsight macro script 2 for processing HETIE 3D dataset generated by the
sequences in Appendix A.3
/∗ psum 5t=p12 5s+p34 5s +2.0∗ p56 5s −2.0∗ p78 5s ; ∗/
t12=p1s−p2s ;
t34=p3s−p4s ;
t1234=t12+t34 ;
d e l e t e t12 ;
d e l e t e t34 ;
t56=p5s−p6s ;
t78=p7s−p8s ;
t5678=t56−t78 ;
d e l e t e t56 ;
d e l e t e t78 ;
psum=t1234+t5678 ;
d e l e t e t1234 ;
d e l e t e t5678 ;
d i s psum ;
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